
Bridging high-throughput genetic and transcriptional
data reveals cellular responses to alpha-synuclein toxicity
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Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify
components of these responses increasingly depend on mRNA profiling and genetic library screens. By comparing the results
of these two assays across various stimuli, we found that genetic screens tend to identify response regulators, whereas mRNA
profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these
data using known molecular interactions, thus highlighting major response pathways. We used this approach to reveal cellular
pathways responding to the toxicity of alpha-synuclein, a protein implicated in several neurodegenerative disorders including
Parkinson’s disease. For this we screened an established yeast model to identify genes that when overexpressed alter
alpha-synuclein toxicity. Bridging these data and data from mRNA profiling provided functional explanations for many of
these genes and identified previously unknown relations between alpha-synuclein toxicity and basic cellular pathways.

The cellular response to perturbations including environmental
changes, toxins and mutations is typically complex and comprises
signaling and metabolic changes, as well as changes in gene
expression. Revealing the molecular mechanisms underlying cellu-
lar response to a specific perturbation may determine the nature of
the perturbation, thus illuminating disease mechanisms1 or a drug’s
mode of action2,3, and identify points of intervention with poten-
tial therapeutic value4.

High-throughput experimental techniques are commonly used
for finding components of these response pathways because
they provide a genome- and proteome-wide view of molecular
changes. mRNA profiling experiments rapidly identify genes that
are differentially expressed following stimuli. Genetic screening,
including deletion, overexpression and RNAi library screens,
identify genetic ‘hits’, genes whose individual manipulation alters
the phenotype of stimulated cells. However, each technique
has obvious limitations for identifying the full nature of
cellular responses. mRNA profiling experiments do not target
the series of events that led to the differential expres-
sion. Genetic screens provide strong evidence that a gene is
functionally related to the response process, but this relation-
ship is often indirect and hard to decipher, especially in

high-throughput experiments that typically result in scores
of relevant genes with various functions.

It has been noted previously in a few specific instances2,5–9 that
genetic screens do not identify the same genes as mRNA assays
conducted in the same conditions. Here we show that this discrepancy
is, in fact, a general rule. Furthermore, we find a marked bias in
each technique. We bridge this gap between the two forms of
high-throughput data by using an algorithm that exploits molecular
interactions data to reveal the functional context of genetic
hits and additional proteins that participate in the response but that
were not detected by either the genetic or the mRNA profiling
assays themselves.

We applied the algorithm to identify cellular responses to
increased expression of alpha-synuclein, a small human protein
implicated in Parkinson’s disease whose native function and role in
the etiology of the disease remain unclear10. We screened an
established yeast model for alpha-synuclein toxicity11,12 using an
additional set of 3,500 overexpression yeast strains, exposing the
multifaceted toxicity of alpha-synuclein. Application of our
approach to the genetic hits from the screen and to transcriptional
data of the yeast model provides the first cellular map of the
proteins and genes responding to alpha-synuclein expression.
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RESULTS
Comparing genetic hits and differentially expressed genes
We analyzed published mRNA profiles and genetic hits for 179 distinct
perturbations in yeast (Methods). The perturbations included chemi-
cal and genetic insults affecting a multitude of cellular processes.
Thirty of the genetic screens are complete, typically identifying 4100
genetic hits. In almost all cases the overlap was small and statistically
insignificant (Table 1 and Supplementary Table 1a online).

We used Gene Ontology (GO) enrichment analysis to check
whether each assay may be biased toward distinct aspects of cellular
responses (Supplementary Table 1b and Supplementary Fig. 1a
online). The combined genetic hits from all 179 genetic screens
were highly enriched for several annotations, among the most frequent
of which were biological regulation (23.3%, P o 10�82), including
transcription (14%, P o 10�44) and signal transduction (6.3%, P o
10�31). In contrast, the differentially expressed genes from all pertur-
bations were enriched mostly for various metabolic processes (for
example, organic acid metabolic process 7.1%, P o 10�18) and
oxidoreductase activities (7.2%, P o 10�34). We observed the same
enrichment trends upon focusing only on the 30 perturbations for
which complete data were available when analyzed individually or
when combined (Supplementary Tables 1 c,d and Supplementary
Note online). Thus, we find that genetic assays tend to probe the
regulation of cellular responses, whereas mRNA profiling assays tend
to probe the metabolic aspects of cellular responses.

The differences in annotation between genetic hits and differentially
expressed genes imply that each gene set alone often provides a limited
and biased view of cellular responses. This hypothesis was confirmed
in pathways that were well-studied by more classical methods. In the
yeast DNA-damage response pathway, for example, a genetic screen4

detected proteins that sense DNA damage
(Mec3, Ddc1, Rad17 and Rad24), whereas
mRNA profiling detected repair enzymes
such as Rnr4 (ref. 13). Yet core components
that had been uncovered by intense investiga-
tions over many years, such as the signal
transducers Mec1 and Rad53 and the tran-
scription factor Rfx1, remained undetected by
either high-throughput assay.

To fully reap the benefits of applying high-
throughput methods to new problems and
underexplored biological processes, it is essen-
tial to find new routes to connect these data
and obtain a true picture of the regulation of
cellular responses. Judging from characterized
pathways such as the DNA-damage response
discussed above, we expect that some of the
genetic hits, which are enriched for response

regulators, will be connected via regulatory pathways to the differen-
tially expressed genes, which are the output of such pathways, via
components of the response that are missing from the experimental
data (Fig. 1).

ResponseNet algorithm for identifying response networks
We devised the ResponseNet algorithm to identify molecular interac-
tion paths connecting genetic hits and differentially expressed genes,
including components of the response that are otherwise hidden
(Fig. 1). The yeast Saccharomyces cerevisiae provides a powerful
model system for such analysis owing to the extensive molecular
interactions data now available (Methods and Supplementary
Table 2a online). We assembled an integrated network model of the
yeast interactome that contains protein–protein interactions, meta-
bolic relations and protein–DNA interactions detected by various
methods with different levels of reliability14. The resulting interactome
relates 5,622 interacting proteins and 5,510 regulated genes, which are
represented by network nodes, via 57,955 molecular interactions,
which are represented by network edges.

Table 1 Measured responses to cellular perturbations

Perturbationa

Number of differentially

expressed genesb

Number of

genetic hitsc Overlap P value

Growth arrest (HU) 59 86 0 1

DNA damage (MMS) 198 1,448 43 0.81

ER stress (tunicamycin) 200 127 5 0.42

Fatty acid metabolism (oleate) 269 103 9 0.041

ATP synthesis block (arsenic) 828 50 9 0.25

Protein biosynthesis (cycloheximide) 20 164 0 1

Gene inactivation, screen complete

(24 data sets)d
27 130 0 1

Gene inactivation, screen incomplete

(149 data sets)d
24 12 0 1

aSee Supplementary Table 1a for data sources. bDifferentially expressed genes were defined as those showing at least a twofold
change in expression following the perturbation or as defined in the original papers. cNumber of genes whose genetic
manipulation affects the phenotype of perturbed cells as defined in the original papers. dMedian results are shown.

Genetic hit

Interaction not selected 
by ResponseNet

Interaction selected 
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Protein selected 
by ResponseNet

Differentially expressed gene
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Figure 1 Regulatory relationships between genetic and transcriptional data.

Cellular response is depicted through a general signaling pathway, including

receptor binding, transcription factor (TF) translocation into the nucleus and

gene expression. Genetic screens and mRNA profiling identify only some of

these molecular components and often do not identify the same genes, as

shown. We find that the proteins products of genes identified in genetic

screens (colored blue) tend to be molecules with regulatory roles. We
therefore hypothesize that they may directly or indirectly contribute to the

regulation of the observed change in gene expression (colored magenta).

ResponseNet identifies the likely regulatory pathways and predicts proteins

that are part of these pathways even if they are not identified in either

screen (colored red).
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Our interactome representation has two important features that
facilitate identification of pathways relating genetic hits to tran-
scriptional changes. First, we highlighted the transcriptional reg-
ulatory role of proteins by representing differentially expressed
genes and their protein products as separate gene and protein
nodes, respectively. The only connection between protein and gene
nodes is through edges representing observed protein–DNA inter-
actions between transcriptional regulators and their target genes.
Edges between two protein nodes represent other interaction types.
Consequently, pathways connecting genetic hits to differentially
expressed genes must pass through transcriptional regulators
(Supplementary Fig. 1b). Second, because interactions vary in
their reliability, each edge was given a weight that represents the
probability that the connected nodes interact in a response path-
way. Probabilities were computed using a Bayesian method that
considers the experimental evidence supporting an interaction, and
that favors interactions among proteins acting in a common
cellular response pathway (Methods and Supplementary Table 2b).

Because of the vast number of edges, a search for all interaction
paths connecting the genetic hits to the differentially expressed genes
typically results in ‘hairball’ networks that are very hard to interpret
(Fig. 2a). Pioneering approaches that searched an interactome for
high-probability paths had to limit the output path lengths to three
edges for computational complexity issues15,16. We aimed for a
solution that would (i) pick the subset of genetic hits most likely to
modulate the differentially expressed genes without limiting it a priori

to known regulatory genes, (ii) identify and rank intermediary
proteins that are likely to be part of response pathways but escaped
detection by high-throughput methods and (iii) give preference to
proteins that lie on high-probability paths connecting the genetic hits
to the differentially expressed genes without imposing constraints on
the network topology.

These requirements were met with a ‘flow algorithm’, a computa-
tional method used previously to analyze known signaling or meta-
bolic pathways (for example, see ref. 17). Basically, flow goes from a
source node to a sink node through the graph edges; edges are
associated with a capacity that limits the flow and with a cost. (As a
loose analogy, this resembles water finding the path of least resistance
through a complex landscape.) To identify response pathways we
required that flow pass from genetic hits through interactome edges to
differentially expressed genes (Supplementary Fig. 1b). We then
formulated our goal as a minimum-cost flow optimization problem18:
Cost was defined as the negative log of the probability of an edge.
Hence, minimizing the cost gives preference to high-probability
paths (Methods).

The solution to the optimization problem is a relatively sparse
network connecting many of the genetic hits to many of the differ-
entially expressed genes through known interactions and intermediary
proteins (Fig. 2b). Although these intermediary proteins escaped
detection by either high-throughput genetic analysis or mRNA profil-
ing, they are predicted by the algorithm to participate in the response.
All proteins in the solution are ranked by the amount of flow they

a

b

c
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Figure 2 Interactome subnetworks connecting genetic and transcriptional data. (a) A network connecting genetic and transcriptional19 data of STE5 deletion

strain via paths with length of three edges or fewer finds 193 nodes and 778 edges. (b) The network created by ResponseNet connects the genetic and

transcriptional19 data of STE5 deletion strain via 23 intermediary nodes and 96 edges. Higher ranked nodes, as determined by ResponseNet, appear in

darker shades of blue and include core components of the pheromone response pathway. Ste5 itself, marked by a red circle, is ranked ninth among the top

predicted proteins. (c) The highly ranked part of the network created by ResponseNet upon connecting genetic hits4,20 to DNA-damage signature genes21

identified in yeast treated with the DNA-damaging agent methyl methanesulfonate (MMS). The highest ranking intermediate nodes predicted by ResponseNet

include core components of the DNA-damage–response pathway. The complete network appears in Supplementary Figure 4 online. Each node represents

either a protein or a gene, and edges represent protein–protein, metabolic and protein–DNA interactions. The darkness of an edge increases with the

amount of flow it carries. Differentially expressed genes are labeled with a suffix of g+ for upregulation and g– for downregulation. Networks were visualized

using Cytoscape.
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carry. The more flow that passes through a protein, the more
important it is in connecting the input sets.

Validation of the ResponseNet algorithm
To determine whether ResponseNet provides valid biological insights,
we used it to analyze data from perturbations of well-studied path-
ways. For example, we used ResponseNet to connect genetic hits
associated with Ste5 (from the Saccharomyces Genome Database) and
differentially expressed genes19 collected from a strain lacking Ste5, a
scaffold protein that coordinates the MAP kinase cascade activated by
pheromone (Fig. 2b). Nodes selected by ResponseNet were highly
enriched for proteins functioning in the pheromone response pathway
(46%, P o 10�18), thus revealing the perturbed biological process.
The highly ranked intermediary proteins included key regulators of
the pheromone response including Ste5, the source of perturbation.

ResponseNet also performed well in analyzing the complex
cellular response to DNA damage4,20,21. Nodes discovered by
ResponseNet were highly enriched for the GO categories response
to DNA damage stimulus (21%, P o 10�14) and DNA repair
(19%, P o 10�14). The highly ranked part of the network
contained core pathway proteins that were uncovered by years of
intense investigation but escaped detection by high-throughput
screens, including signal transducers (Mec1, Rad53), members of
the RFC complex (Rfc2, Rfc3, Rfc4, Rfc5) and the transcriptional
regulator Rfx1 (Fig. 2c). Statistical evaluation of the performance
of ResponseNet on data for less well-characterized pathways is
described in the Supplementary Note.

Mapping the cellular responses to alpha-synuclein toxicity
Having established the validity of our method to uncover connections
between otherwise disparate high-throughput datasets, we applied
ResponseNet to investigate the cellular toxicity associated with alpha-
synuclein (a-syn). a-Syn is a small lipid-binding protein that is
natively unfolded when not bound to lipids and prone to forming
toxic oligomers22. It has been implicated in several neurodegenerative
disorders, particularly Parkinson’s disease (PD): it is the main com-
ponent of Lewy bodies, locus duplication or triplication of a-syn
lead to familial forms of PD, and increased expression of a-syn
leads to neurodegeneration in several animal models23. Despite
immense efforts, the cellular pathways by which a-syn leads to cell
death are just beginning to emerge.

The yeast Sacccharomyces cerevisiae pro-
vides a powerful system for studying the
toxicities of a-syn that result from its
intrinsic physical properties. Expression
of human a-syn in yeast yields dosage-
dependent defects also found in mamma-
lian systems, including cytosolic-lipid-dro-
plet accumulation, reactive-oxygen-species
production and ubiquitin-proteasome sys-
tem impairment11. An initial screen for
yeast genes that modify a-syn toxicity
when overexpressed identified genes
involved in ER-to-Golgi vesicle trafficking
and led to the observation that a-syn
blocks ER-to-Golgi vesicle trafficking12.

We now report the results of screening
5,500 overexpression yeast strains, thereby
covering 85% of the yeast proteome. We
identified 55 suppressors and 22 enhancers
of a-syn toxicity, many with clear human

orthologs, including the homolog of human PD gene ATP13A2 (also
known as PARK9; Table 2 and Supplementary Table 3a online). As
demonstrated in the accompanying article (Gitler et al.24), PARK9 and
the human homologs of eight other genetic modifiers with diverse
functions (Ypt1, Hrd1, Ubp3, Pde2, Cdc5, Yck3, Sit4 and Pmr1) are
efficacious in neuronal models, validating the yeast model as mean-
ingful to a-syn toxicity in neurons12,24. Major classes of genes that
emerged include vesicle-trafficking genes, kinases and phosphatases,
ubiquitin-related proteins, transcriptional regulators, manganese trans-
porters and trehalose-biosynthesis genes (Supplementary Table 3a,b).
Notably, trehalose was recently shown to promote the clearance of
misfolded mutant a-syn25, and manganese exposure has been linked
with Parkinson’s-like symptoms, albeit with a distinct underlying
pathology26. The genes identified by the screen point to causal
relations between a-syn expression and toxicities previously associated
with PD but not specifically linked to a-syn (Supplementary Note).

mRNA profiling of the yeast model was determined in a separate
study (unpublished data and Supplementary Table 3b,c). Upregu-
lated genes prominently included genes with oxidoreductase activities
(13%, P o 10–9). Downregulated genes included ribosomal genes
(28%, P o 10–30), as commonly observed under stress27. More
specific to a-syn toxicity, the downregulated genes were markedly
enriched for genes encoding proteins localized to the mitochondria
(60%, P o 10–44).

Table 2 Yeast genes that modify a-syn toxicity when overexpressed

Gene class a-syn toxicity suppressors a-syn toxicity enhancers

Amino acid transport Avt4, Dip5, Lst8

Autophagy Nvj1

Cytoskeleton Icy1, Icy2

Manganese transport Ccc1 Pmr1

Protein phosphorylation Cdc5, Gip2, Ime2, Ptp2, Ptc4, Rck1, Yck3 Cax4, Ppz1, Ppz2, Sit4

Transcription or translation Cup9, Fzf1, Hap4, Jsn1, Mga2,

Stb3, Tif4632, Vhr1

MATALPHA1, Mks1, Sut2

Trehalose biosynthesis Nth1, Tps3, Ugp1

Ubiquitin-related Cdc4, Hrd1, Uip5 Ubp7, Ubp11

Vesicular transport, ER-Golgi Bre5, Erv29, Sec21, Sec28,

Sft1, Ubp3, Ykt6, Ypt1

Bet4, Glo3, Gos1, Gyp8,

Sec31, Sly41, Trs120, Yip3

Other cellular processes Isn1, Mum2, Osh2, Osh3, Pde2,

Pho80, Pfs1, Qdr3

Eps1, Ids2, Izh3, Tpo4

Unknown function YBR030W, YDL121C, YDR374C,

YKL063C, YKL088W, YML081W, YML083C,

YMR111C, YNR014W, YOR129C, YOR291W (Ypk9)
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Figure 3 Nitrosative stress response to a-syn expression in yeast. (a) The

predicted subnetwork containing Fzf1 and its differentially expressed target

genes. Graphical representation is similar to Figure 2. (b) Immunoblotting

against S-nitrosocysteine performed on a control strain (vector), on a strain

expressing one copy of a-syn (NoTox) and on a high-toxicity strain (HiTox)

expressing several copies of a-syn reveals that increasing levels of a-syn

increase the amount of S-nitrosylated proteins.
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The genetic and mRNA profiling data exemplify both the power
and the limitations of the current approaches. Although they reveal
the wide range of cellular functions altered by a-syn, the precise roles
of the identified genes in the cellular response are unclear. For
example, we checked whether the ubiquitin-related genetic hits affect
a-syn degradation. However, in strains overexpressing these ubiquitin-
related genes, we did not detect changes in steady-state a-syn protein
concentrations (Supplementary Fig. 2 online). As with our analyses
above, the overlap between the genetic hits and the differentially
expressed genes was minor (four genes, P ¼ 0.96).

Application of ResponseNet to these disparate datasets gave a more
coherent view of the cellular response (Supplementary Fig. 3a online).
The resulting network provided context to a large portion of the data:
34 (44%) genetic hits and 166 (27%) differentially expressed genes
were linked to each other through 106 intermediary proteins.
These include two-thirds of the protein kinase, phosphatase and
ubiquitin-related genetic hits, illuminating their intricate role in the
response to a-syn.

The major cellular pathways identified by ResponseNet included
ubiquitin-dependent protein degradation, cell cycle regulation and
vesicle-trafficking pathways, all of which have previously been asso-
ciated with PD (Supplementary Note and Supplementary Fig. 3a).
Four examples illustrate the ability of ResponseNet to clarify aspects of
a-syn responses relevant to PD and uncover others whose relationship
to a-syn was completely unknown.

Nitrosative stress
Fzf1 was the only genetic hit related to nitrosative stress28. However,
ResponseNet connected it to four upregulated transcripts, including
that encoding Pdi1, a protein disulfide isomerase (PDI) (Fig. 3a).
Notably, the upregulation of human PDI protects neuronal cells from
neurotoxicity associated with ER stress and protein misfolding (both
of which are linked to a-syn expression in yeast and neurons), and
PDI is one of a small number of specific proteins S-nitrosylated in PD
that activate protective pathways, in addition to the generalized
nitrosative damage that is a hallmark of the disease29. We found
that increased expression of a-syn causes both specific and general

increases in S-nitrosylation of proteins (Fig. 3b). This was highly
surprising because the yeast genome does not encode a canonical
nitric oxide synthase and, until very recently, yeast were not thought to
produce nitric oxide30. Our results indicate that the nitrosylation of
specific proteins and generalized nitrosylation is a highly conserved
and deeply rooted response to cellular perturbations created by a-syn.

Heat shock
The induction of the heat-shock response directly or via chemical
inhibition of Hsp90 (ref. 31) suppresses a-syn toxicity in many model
systems including yeast, flies, mice and human cells (for example, see
refs. 32,33). However, heat-shock–related genes were conspicuously
absent among the list of genetic suppressors. Nonetheless, Response-
Net predicted the involvement of two highly conserved heat-shock
regulators, the chaperone Hsp90 (isoform Hsp82, Supplementary
Fig. 3a, panel a) and the heat-shock transcription factor Hsf1
(Fig. 4a). Hsf1 appeared downstream of the toxicity suppressor
Gip2, a putative regulatory subunit of the Glc7 phosphatase, which
interacts with Gac1. Gac1 is a regulatory subunit of the Glc7 complex
that is known to activate Hsf1 (ref. 34). These connections suggested
that Gip2 overexpression might induce a heat-shock response. Indeed,
we found that strains overexpressing Gip2 show elevated concentra-
tions of heat-shock proteins (Fig. 4b). ResponseNet therefore pro-
vided a mechanistic explanation for the suppression of a-syn toxicity
achieved by Gip2 overexpression and identified a new regulator of the
highly conserved heat-shock response.

The mevalonate-ergosterol biosynthesis pathway
This pathway, which is targeted by the cholesterol-lowering statin
drugs, synthesizes sterols as well as other products with connections to
a-syn toxicity, such as farnesyl groups required for vesicle trafficking
proteins and ubiquinone required for mitochondrial respiration.
ResponseNet ranked highly Hrd1, which regulates the protein target
of statins, and the predicted intermediary Hap1, a proposed transcrip-
tional regulator of the pathway35 (Supplementary Fig. 3a, panel a). In
addition, the a-syn mRNA profile modestly correlated with the profile
of yeast treated with lovastatin (r ¼ 0.32, P o 10�93, L.J.S. and S.L.,
unpublished data), and several genetic hits also could be associated
with products of the pathway (enzymes Bet4 and Cax4, farnesylated
proteins Ypt1 and Ykt6 and putative sterol carriers Sut2, Osh2 and
Osh3). We therefore tested the effect of lovastatin, which selectively
inhibits the highly conserved HMG-CoA reductase protein in yeast
and in mammalian cells, on a-syn toxicity. Addition of 5 mM
lovastatin to the media caused a further reduction in growth to strains
overexpressing a-syn (Fig. 5a), but did not reduce growth of either
wild-type controls or of cells expressing another toxic protein, a
glutamine-expansion variant of huntingtin exon I36 (Supplementary
Fig. 3b). We further tested ubiquinone, a downstream output of this
pathway, reasoning that its downregulation through the action of
a-syn might increase cellular vulnerability. Indeed, the addition of
ubiquinone-2 to the media provided a modest suppression against
a-syn toxicity. Ubiquinone is an antioxidant, but this was not a
nonspecific antioxidant response, as the antioxidant N-acetylcysteine
had no effect (data not shown).

The target of rapamycin (TOR) pathway
ResponseNet identified the TOR pathway proteins Tor1, Tor2 and
their target transcription factors as intermediary between the genetic
suppressor Lst8, a positive regulator of the TOR pathway, and several
upregulated genes involved in spore wall formation (a vectorially
directed secretory process in yeast) and vacuolar protein degradation
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Figure 4 Overexpression of Gip2 causes induced expression of Hsf1 targets.

(a) The predicted subnetwork links the toxicity suppressor Gip2 and the

toxicity enhancer Ppz1 to Hsf1 and Msn2 via components of type 1 protein

phosphatase complex (Gac1, Glc7, Ypi1, Sds22). Graphical representation

is similar to Figure 2. (b) Immunoblotting of vector cells overexpressing GFP,

Fzf1 or Gip2 with antibodies against Hsp104 and Hsp26. Overexpression

of Gip2 is sufficient to activate Hsf1 and induce higher protein levels of

both its targets Hsp104 and Hsp26, similar to that of vector cells subjected

to heat shock. In contrast, overexpression of another genetic suppressor,

Fzf1, does not activate Hsf1. Immunoblotting against Pgk1 was used as

a loading control.
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(Fig. 5b). We found that addition of the TOR-inhibitor rapamycin to
the media markedly enhanced the toxicity of a-syn. Indeed, a low dose
of a-syn, which is otherwise innocuous, became toxic (Fig. 5c).
Establishing the specificity of this effect to a-syn, rapamycin did not
reduce growth of cells expressing glutamine expansion variants of
huntingtin exon I (Supplementary Fig. 3c). As other studies have
suggested benefits of rapamycin treatment in PD models, these results
call for further investigation and suggest a complexity to the response
to rapamycin that is potentially due to the vast range of processes
affected by TOR activation.

DISCUSSION
We provide a novel framework in which genetic, physical and
transcriptional data naturally complement each other in the context
of cellular response to biological perturbations. Although the com-
plementary nature of these data has been noted2,5–9,37, a systematic
analysis of the relationship between stimulus-specific genetic modifiers
and transcriptional responses has been lacking. By examining over 150
distinct stimuli we find that differentially expressed genes and genetic
hits are consistently disparate (Table 1); genetic hits are biased toward
regulatory proteins, whereas the differentially expressed genes are
biased toward metabolic processes. Indeed, each assay has inherent
‘blind spots’. Many yeast regulatory proteins are not detected by
transcriptional assays because either they are predominantly regulated
post-transcriptionally, they have a low transcript concentration38 or
their differential expression is transient, making changes hard to
measure. Conversely, the genes that are differentially transcribed are
often involved in metabolic processes or redundant functions, which
tend to be robust against single mutations39.

The discordance between genetic hits and differentially expressed
genes has implications for the search for therapeutic strategies. In
yeast, inactivating a differentially expressed gene is no more likely to
affect cell viability than targeting a randomly chosen gene. Bridging
the gap between these data using techniques like ResponseNet can
potentially reveal intervention points not discovered in the high-
throughput assays themselves (Fig. 2) that may be targeted by drugs.

Our computational approach is based on a flow algorithm to
connect the genetic hits and differentially expressed genes. Unlike
studies that link a target gene with its causal transcriptional
change13,15,16,40–43, a flow-based approach allows for a global, efficient
and simultaneous solution for multiple target genes that puts no a
priori bounds on the structure of the output. Indeed, the predicted
output networks have rich structures with half of all paths having a
length of three edges or more. The ability of ResponseNet to analyze
interactome data containing tens of thousands of nodes and edges
make it well suited to analyzing the accumulating data from other
species or other techniques.

We applied our approach to a yeast model for a-syn pathobiology
implicated in PD. Our unbiased screen identified 77 genes whose
overexpression altered a-syn toxicity (Table 2). These included genes
involved in vesicle trafficking (as previously reported), protein
degradation, cell cycle regulation, nitrosative stress, osmolyte bio-
synthesis and manganese transport. This screen established an inter-
face between a-syn and a large number of cellular and environmental
factors previously linked to neuropathology and, in some cases,
specifically to parkinsonism, but not specifically linked to a-syn.
Many of the genes we identified are highly conserved in humans,
where they may exert similar effects. Indeed, eight out of nine toxicity
modifiers tested had similar effects on a-syn toxicity in yeast and in
neuronal systems24.

Application of ResponseNet to the a-syn model successfully pro-
vided functional context to many of the genetic hits identified in our
yeast screen (Supplementary Fig. 3a) and pointed to the involvement
of several cellular pathways (Figs. 3–5). Of these, the mevalonate-
ergosterol pathway is of special interest as its perturbation could
potentially alter a variety of downstream pathways, including protein
farnesylation and ubiquinone biosynthesis, which are closely related to
the vesicle trafficking defects and mitochondrial dysfunction observed
in the yeast model. Indeed, a link between sterol biosynthesis and the
etiology of PD has recently emerged. Individuals with PD have
significantly lower concentrations of low-density lipoprotein (LDL)
cholesterol than their spouses44, and low concentrations of LDL
preceded the appearance of PD in a group of men of Japanese
ancestry45. Our work provides a molecular framework for elucidating
this connection.

The global picture obtained by integrating high-throughput genetic,
transcriptional and physical data demonstrates the power of integra-
tive approaches to illuminate underexplored cellular processes. As
high-throughput assays are becoming routine in the study of complex
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Figure 5 Effects of the small molecules lovastatin and rapamycin on a-syn

toxicity. (a) Lovastatin inhibits growth of the yeast strain expressing an

intermediate level of a-syn. Growth of a control strain (vector) and an

intermediate toxicity strain (IntTox) expressing several copies of a-syn was

measured in a galactose containing media with and without 5 mM lovastatin.

Each growth curve reflects the average of three individual runs, each of

which is indicated by a bar. (b) The predicted subnetwork containing TOR

pathway components includes the predicted proteins Tor1 and Tor2.

Graphical representation is similar to Figure 2c. (c) The effect of rapamycin

on growth of different yeast strains. The upper panel shows the growth of a

control strain (vector), a strain expressing one copy of a-syn (NoTox), a high-

toxicity strain (HiTox) and an intermediate toxicity strain (IntTox) both

expressing several copies of a-syn, in a galactose containing media (SGal)

that is used to induce expression of a-syn. The lower panel shows the same

strains grown in media that also contains 1 nM rapamycin, showing that
rapamycin inhibits growth of all a-syn–expressing strains but not the control

strain, as observed by the difference in the number of colonies per drop. The

different columns correspond to serial dilutions.
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disease and developmental processes, approaches for deciphering these
data based on their underlying characteristics are vital.

METHODS
Genetic and transcriptional datasets. Chemical perturbation data were down-

loaded from original papers. Genetic hits for gene inactivation included

proteins that genetically interact with the inactivated gene according to

Saccharomyces cerevisiae Genome Databases (SGD). Differentially expressed

genes included genes that showed at least a twofold change in expression with a

P value r0.05 (ref. 19), or else as defined according to the original papers.

Genetic and mRNA profiling assays for chemical perturbations were paired if

the chemical concentrations were comparable.

Interactome data description. The interactome was represented as a graph

G ¼ (V, E) where nodes V represent genes and proteins and edges E represent

their interactions. Different nodes represent a gene and its correspon-

ding protein.

Bidirectional edges between protein nodes represent physical protein–

protein interactions or metabolic interactions between enzymes if the substrate

of one is the product of the other.

Directed edges represent regulatory interactions. Outgoing edges connected

protein nodes to gene nodes if there was evidence from literature or ChIP-chip

assays that the proteins may regulate the genes. Proteins nodes were connected

if both proteins were transcriptional regulators and one regulated the other.

The data sources appear in the Supplementary Note. Supplementary Table

2a lists the number of interacting pairs per interaction type in the interactome.

Weighting scheme for interactome edges. Interactions between protein nodes.

Each interacting protein pair pi,pj was associated with an interaction vector

Ipi,pj; vector entry Ikpi,pj is an indicator function for interaction evidence of

type k. Interactions are weighted (wij) to reflect the probability that pi,pj
function in a randomly selected response pathway (denoted RPPi,Pj ¼ 1)

as follows:

wij ¼ PðRPpipj ¼ 1jIpipj Þ ¼ PðIpipj jRPpipj ¼ 1ÞPðRPpipj ¼ 1Þ=PðIpipj Þ;

where

PðIpipj Þ ¼ PðIpipj jRPpipj ¼ 1ÞPðRPpipj ¼ 1Þ
+PðIpipj jRPpipj ¼ 0ÞPðRPpipj ¼ 0Þ

We assumed conditionally independence between different types of evidence:

PðIpipj jRPpipj Þ ¼
Y

k
PðIkpipj jRPpipj Þ

Interactions between protein and gene nodes. Weights were designed to reflect the

reliability of the interaction on the basis of experimental evidence and binding-

site conservation.

The scheme for calculating P(RP) and P(I k| RP) and the weights per

interaction type appear in the Supplementary Note. Because high edge weights

could indicate unusually well-studied proteins46 or imperfectness of the

assumption of conditional independence, all weights were capped to a max-

imum value of 0.7.

Linear programming formulation. For each perturbation, the input to

ResponseNet consisted of the weighted interactome G ¼ (V, E), the genetic

hits GenCV and the differentially expressed genes TraCV identified following

the perturbation. Each edge (i, j) AE was characterized by a weight wij and a

capacity cij ¼ 1.

The graph G was updated as follows:

1. V¢ ¼ V , {S, T}, where S and T are auxiliary nodes representing the

source and sink, respectively.

2. E¢ ¼ E,(S,i)8iAGen,(i,T)8iATra, connecting S to the genetic hits and T to

the differentially expressed genes by directed edges.

3.

cSi ¼
strengthij jP

j2Gen
strengthj
�� �� ;

8iAGen, where the strength of each genetic hit was measured by the variation it

conferred on the number of colonies per drop if available; otherwise, strengths

were uniform.

4.

ciT ¼
log2ðstrengthiÞ
�� ��

P
j2Tra

log2ðstrengthjÞ
�� �� ;

8iATra, where the strength was measured by either the relative change in its

transcript level or the P value associated with it, depending on their availability.

5. wSi ¼ cSi 8iAGen and wiT ¼ ciT 8iATra

Letting fij denote the flow from node i to node j and for any given gZ 0, the

following optimization problem was solved using LOQO47:

minð
f

ð
X

i2V 0 ;j2V 0
� logðwijÞ � fijÞ � ðg �

X

i2Gen
fSiÞÞ

Subject to:

X

j2V 0
fij �

X

j2V 0
fji ¼ 0 8i 2 V 0 � fS;Tg

X

i2Gen
f Si �

X

i2Tra
fiT ¼ 0

0 � fij � cij 8ði; jÞ 2 E0

The solution F ¼ {fij 4 0} defined the predicted response network. For

enrichment analysis only protein nodes were considered, and genetic hits were

included only if they received flow from nodes other than the source. Protein

nodes were ranked in decreasing order according to the total amount of their

incoming flow. Although the solution to the optimization problem is a directed

network, this directionality only reflects the way in which the algorithm

directed flow from the genetic hits to the differentially expressed genes and

does not represent the causal order of events (Supplementary Fig. 1b).

Additional information regarding the formulation, space of solutions, setting

g value and ResponseNet performance appear in the Supplementary Note. For

ResponseNet validation g ¼ 10.

Statistical analysis. Probabilities of overlap between genetic hits and differen-

tially expressed genes were calculated using Fisher’s exact test, given a total of

6,000 yeast genes. Enrichment analysis was done using the Gene Ontology Term

Finder from SGD.

a-Syn toxicity modifier screen The high-throughput yeast transformation

protocol appears elsewhere12.

Immunoblotting. Phosphoglycerate kinase 1(Pgk1) mouse monoclonal anti-

body was used at 1:5000. Hsp26 rabbit polyclonal antibody (gift from

J. Buchner, Center for Integrative Protein Science and Department of Chem-

istry, Technische Universität München) was used at 1:5000. Hsp104 mouse

monoclonal antibody (4B; ref. 48) was used at 1:5000. S-nitosocysteine rabbit

polyclonal antibody (Sigma) was used at 1:10,000.

a-Syn ResponseNet analysis. Differentially expressed genes had at least a

twofold change in expression with P value r0.05 (Supplementary

Table 3c). Capacities of edges connecting the source to genetic hits were

relative to the absolute strength of the genetic hits (Supplementary

Table 3a). Capacities of edges connecting differentially expressed genes to

the sink were relative to the absolute log of the change in expression. We

repeated the analysis excluding nonspecific stress responses (Supplementary

Note). ResponseNet was run with g ¼ 12.

a-Syn growth in presence of small molecules. For spotting assays, yeast strains

were initially grown to saturation in media containing raffinose, normalized for

their A600 and serially diluted by fivefold before spotting onto appropriate yeast

media. Growth curves were monitored using the Bioscreen instrument. Yeast

strains were pre-grown in 2% raffinose medium and induced in 2% galactose

medium in presence of either the compound or vehicle control (1% DMSO

final) with starting A600 of 0.1. Cells were grown at 30 1C, with plates shaken
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every 30 s to ensure proper aeration and A600 measurements taken every

half hour over a 2-d period. The resulting data (A600 versus time) were plotted

using Kaleidagraph. At least three independent runs were conducted for each

growth condition.

Note: Supplementary information is available on the Nature Genetics website.
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The bias in the sets of genetic hits and the sets of differentially 
expressed genes 
Enrichment analyses were carried out using Gene Ontology (GO) term finder from SGD1 

and Genomica2.  Supplementary Table 1B contains the GO enrichment of the genetic hits 

and of the differentially expressed genes.  To validate that the biases for the pooled hits 

represent general tendencies, as opposed to being dominated by a handful of large data 

sets, we repeated the analysis in several ways as detailed below. 

Separate analysis of the perturbations with complete genetic screens 

We calculated the gene ontology (GO) process or function annotation enrichment 

separately for each of the perturbations in Table 1 for which complete genetic screens 

were available.  To avoid being biased by a handful of perturbations we required that an 

annotation be enriched in data of at least 6 perturbations, which is 20% of the datasets.  

Supplementary Table 1C lists the GO annotations that were statistically significantly 

enriched (p<=0.05, FDR corrected) in at least 20% of the sets of genetic hits or at least 

20% of the sets of differentially expressed genes.  The table details for each GO 

annotation the number of sets that were significantly enriched for this annotation and the 

median p-value for its enrichment.    

We identified 146 GO annotations enriched in at least 20% of the sets of genetic hits.  

The three GO annotations enriched in the largest number of genetic hits sets are 

‘biological regulation’ (23 sets, 77%, median p<10-10), ‘response to stimulus’ (23 sets, 

77%, median p<10-8) and ‘regulation of cellular process’ (22 sets, 73%, median p<10-9).  

Other frequently enriched annotations among the sets of genetic hits include cell cycle 

related processes and other regulatory processes (e.g., regulation of cell cycle, post-
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translational protein modification and transcription).   Therefore, genetic hits sets are 

indeed enriched for regulatory processes and functions.   

We identified only 10 annotations that were significantly enriched in at least 20% of the 

sets of differentially expressed genes.  Eight of these annotations are for various 

metabolic processes, and the remaining two annotations are for oxidoreductase activity 

and cell wall constituents.   

Interestingly, none of the enriched annotations was common to both the genetic hits sets 

and the differentially expressed genes sets, supporting our observation of the distinct 

nature of these gene sets.  The genetic hits were enriched for a few annotations that could 

be construed as related to metabolism. However, all-but-one of these were DNA or RNA 

metabolic processes, which are more closely related to cell cycle progression and gene 

transcription than to metabolism per se.  The GO annotation “one-carbon compound 

metabolic process” is exceptional.  It is the only category that is clearly related to 

metabolism but is associated with genetic hits (6 sets, p=0.001). We therefore conclude 

that the bias is evident when the data sources are analyzed separately. 

Combined analysis of the perturbations with complete genetic 
screens 

We created a combined genetic hits set and a combined differentially expressed gene set 

from the perturbations in Table 1 for which complete genetic screens were available.  We 

then checked the GO process and function annotation enrichment of the two combined 

sets.  The enriched annotations that we list in Supplementary Table 1D were limited to 

annotations also found to be enriched in at least 20% of the sets when analyzed 

separately.  This analysis of the combined sets resulted in the identification of 124 GO 

annotations enriched in the combined set of genetic hits, and 10 GO annotations enriched 
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in the combined set of differentially expressed genes.  The results for the combined sets 

appear in Supplementary Table 1D, which lists for each of these GO annotations its 

enrichment p-value and the percentage of genes in the corresponding set that are 

attributed to this annotation. 

The analysis of the combined sets with complete genetic screens again supports the bias 

we reported.  We find that biological regulation is among the most significantly enriched 

and most frequent annotation for the set of genetic hits.  The genetic hits are also 

frequently attributed to various regulatory processes, response pathways, and cell cycle 

phases.  The differentially expressed genes are most frequently attributed to 

oxidoreductase activity and to organic acid metabolic process.   

To enable visualization we further limited the annotations to those annotations attributed 

to at least 5% of the combined gene set.  Supplementary Figure 1A presents each of these 

39 GO annotations together with the percentage of genes attributed to this annotation in 

the enriched set.  

 

Graphical representation of the interactome 
 

The interactome was represented as a graph ),( EVG =  that consists of nodes (vertices) V 

representing genes and proteins, and a set of bidirectional and directed edges E 

representing their interactions. Different nodes in the network represent a gene and its 

corresponding protein.   

Bidirectional edges between protein nodes in the interactome consisted of:   
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(i) Physical protein-protein interactions, which were downloaded from 3 and from 

BioGRID release 2.0.30.   

(ii) Interactions between two proteins if they both appeared in the same literature-

curated protein complex, downloaded from MIPS 4.  

(iii) Metabolic interactions between two enzymes, if the substrate of one was the 

product of the other, based on the metabolic map of S. cerevisiae 5. 

Directed edges in the interactome consisted of: 

(i) Edges from a protein node to a gene node if there was evidence from either 

literature or ChIP-chip assays 6-8 that the protein was a probable transcriptional 

regulator of the gene.  

(ii) Edges from one protein node to another if both proteins acted as transcriptional 

regulators and the first regulated the second. 

Supplementary Table 2A lists the number of interacting pairs per interaction type in the 

interactome.   

Weighting scheme for interactome edges   

Each edge  between node i and node j of the interactome is characterized by a 

weight  calculated as follows: 

Eji ∈),(

ijw

Interactions between protein nodes:  We developed a Bayesian weighting scheme that 

favors interactions between proteins functioning within a common response pathway 

(RP). Each interacting protein pair pi,pj was associated with an interaction vector Ipi,pj, 

where vector entry Ik pi,pj serves as an indicator function for interaction evidence of type 

k.  For example, I”two-hybrid HTP” pi,pj was set to 1 if pi interacted with pj in a high-
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throughput two-hybrid experiment.  Each interacting protein pair pi,pj was assigned a 

weight wij reflecting the probability that pi,pj function in a randomly selected response 

pathway (denoted RPpi,pj=1) based on their interaction evidence vector Ipi,pj .  By Bayes’ 

rule, 

wij = P(RPpi p j
= 1 | I pi p j

) =  P(I pi p j
| RPpi p j

= 1)P(RPpi p j
= 1) /P(I pi p j

) , where  

P(I pi p j
) = P(I pi p j

| RPpi pj
=1)P(RPpi p j

=1)+ P(I pi p j
| RPpi pj

= 0)P(RPpi pj
= 0). 

We assumed that different types of evidence are conditionally independent, so that 

.  To estimate the prior probability P(RP) and the 

conditional probability table associated with each evidence type P(I

∏= k pppkppppp jijijiji
RPIRPI )|(P)|(P

 k| RP) we compiled 

the following: 

1) A set of response pathways containing 54 response-specific processes according to GO 

process annotations (e.g., response to osmotic stress GO:0006970). 

2) A positive set containing all interacting protein pairs functioning in a common 

response pathway (see 1 above) based on reliable GO process annotations.  To exclude 

less reliable sources of annotation we used only GO evidence relying on direct assay or 

expert knowledge (GO evidence codes IC, IDA and TAS). 

3) A negative set composed of interacting protein pairs known not be in a common 

response pathway similar to 9.   

Supplementary Table 2B lists the resulting weights associated with individual evidence 

types.   

Some edge weights  were close to 1, which was unrealistic biologically and could 

instead indicate unusually well-studied proteins 

ijw

10 or imperfectness of the assumption of 

conditional independence.  To prevent such edges from dominating the predicting 
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response networks, and to place all edges with high enough weights on equal footing, the 

weights   were capped to a maximum value of 0.7.  Notably, small changes in this 

value (0.7±0.1) gave similar results in the subsequent analyses.      

Interactions between protein and gene nodes:  These weights were designed to reflect the 

interaction’s reliability based on experimental evidence and conservation. “ChIP-chip 

interactions” refer to interactions discovered by the ChIP-chip method. “ChIP-chip motif 

interactions” refer to those ChIP-chip interactions for which the gene’s upstream 

sequence contained the binding motif of the specific transcription factor. “Reliable 

interactions” included those ChIP-chip motif interactions for which the motif occurrence 

in the gene’s upstream sequence was conserved in at least two other Saccharomyces 

sensu stricto species, as well as literature-curated interactions.  The weight of reliable 

interactions was set to 0.7.  The weight of remaining ““ChIP-chip motif interactions” was 

set to the fraction of “ChIP-chip motif interactions” that were also reliable (0.59) , and 

similarly the weight of remaining ChIP-chip interactions” was set to the fraction of 

“ChIP-chip interactions” that were also reliable (0.51).  

ijw

 

The ResponseNet algorithm  

Directionality of ResponseNet output 

The flow algorithm we employ provides a directed network.  However the directionality 

of the interactions in the network is determined by the fact that we have connected all 

genetic hits to the source of flow and all differentially expressed genes to the flow sink.  

Therefore, except for the interactions between transcription factors and their targets, the 

flow does not necessarily reflect a causal order of events (Supplementary Figure 1B).  
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For example, a genetic hit might be downstream of a signaling protein; yet, since the flow 

algorithm directs flow away from genetic hits, the signaling protein will appear 

downstream of its target.  The reversed direction is not a cause for concern, as we are not 

trying to reconstruct the direction of pathways.  Rather, the goal of our algorithm is to 

identify pathway components (nodes, not edges) that escaped experimental detection.    

Analysis of the space of solutions  

The optimization problem may have multiple optimal or suboptimal solutions. 

To characterize the space of solutions we searched for alternative optimal 

solutions using the method of 11.  Separately minimizing or maximizing each 

edge in the reported network while maintaining the same optimization score 

resulted in very few changes to the network.  The median change in flow, the 

median number of nodes added and the median number of nodes lost from the 

resulting networks were all zero.  Moreover, only 78 out of 504 edges showed a 

change in flow greater than 10-4. 

Since our analysis of the resulting networks focuses on the nodes rather than the flow 

values, we also examined how many nodes changed in these alternative optimal 

solutions.   

Changes in node number upon maximizing edge flow: 

Number of nodes lost Number of distinct solutions 
0 479 
1 23 
2 1 
3 1 
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Number of nodes added Number of distinct solutions 
0 499 
1 5 

Changes in node number upon minimizing edge flow: 

Number of nodes lost Number of distinct solutions 
0 479 
1 25 

 

Number of nodes added Number of distinct solutions 
0 500 
1 1 
2 3 

 
 

These results demonstrate that, at least for the alpha synuclein network, few alternative 

solutions exist and that they are very similar to the reported solution. 

Assessment of ResponseNet performance on 101 datasets 

We tested the ability of ResponseNet to identify cellular response pathways using DNA 

damage and Ste5 inactivation (main text).  To test ResponseNet more broadly, we also 

evaluated its ability to identify hidden components in the cellular response to over one 

hundred distinct perturbations corresponding to inactivations of genes.  For each such 

perturbation the genetic hits set consisted of the genetic interactors of the inactivated 

gene (e.g., synthetic lethals), and the differentially expressed genes were based on mRNA 

profiling of the inactivated strain 12.  The identity of the inactivated gene was hidden from 

the algorithm, and was used to evaluate the predicted network.   
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In most of these cases, the true response pathways are poorly understood.  Consequently, 

there is no perfect way to assess the results.  Here we consider ResponseNet successful in 

revealing the cellular response to the perturbation if the nodes ResponseNet predicted 

fulfill one of two criteria: (i) they included the inactivated gene that was the source of 

perturbation, and the inactivated gene ranked significantly well, or (ii) they were 

significantly enriched for a specific biological process attributed to the inactivated gene.  

We define a specific biological process as a process annotation attributed to at most 1000 

genes, including the inactivated gene, based on reliable sources (evidence codes IC, IDA 

or TAS).   

Ranking and enrichment significance were determined by comparing ResponseNet 

solutions to solutions based on randomized input.  Specifically, for each gene inactivation 

we created 100 randomized solutions:  50 randomized solutions were created by 

randomizing the genetic hits data while maintaining the differentially expressed genes, 

and 50 randomized solutions were created by randomizing the differentially expressed 

genes while maintaining the genetic hits data.  In both cases the interactome was not 

randomized.  Each randomized input set was solved using ResponseNet.  For each 

inactivated gene we then compared the results obtained for the original genetic hits and 

differentially expressed genes to these 100 randomized-input solutions. 

To be considered successful the ResponseNet solution for the original data had to: 

1. Contain the inactivated gene with a rank that is better than its rank in at least 95% of 

the randomized-input solutions, or 

2. show enrichment for the annotation of the inactivated gene that is 
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(1) Significant relative to random selections of the same number of genes from the 

genome (p< 0.01 using Fisher’s Exact Test), and 

(2) More significant than in at least 95% of randomized-input solutions.   

 

ResponseNet success rates for these stringent success criteria are given in Supplementary 

Note Table 1 below.  In total, ResponseNet predictions were successful in 41% of the 

cases.  This rate of success is relatively high considering that ResponseNet typically 

selected only 1% of the yeast proteins as relevant for the response, and that for the 

majority of the cases (85%) genetic hits data were rather limited (a median of 14 genetic 

hits) and no high-throughput genetic screening data are yet available.  Despite the fact 

that relevant interactions might be missing from our data or have low probability 

compared with alternative paths, in 25% of the cases the inactivated gene was predicted 

inside the output network and highly ranked among this small fraction (a median rank of 

9 from the top).  We found that both success criteria contributed to this overall success.  

The first criterion, which is based on the prediction and ranking of the inactivated gene 

resulted in 25 successes.  Considering that the inactivated gene was predicted only in 33 

cases this is a high success rate of 76%.  The second criterion resulted in 28 successes.  

Interestingly, the success rate for cases based on incomplete genetic hits data was 40%, 

compared to 47% for complete genetic screens, demonstrating that ResponseNet 

functions well even when limited genetic hits data are available.  

The above randomization scheme verifies that ResponseNet success rates do not stem 

only from either the genetic hits or the differentially expressed genes data.  These success 

rates therefore stress the benefits of integrating both types of data.   
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Supplementary Note Table 1:  Assessment of the algorithm on 101 genetic 
perturbations. 
 

Median % of input 
explained1

Success in predicting and 
ranking the inactivated gene 

Source of 
genetic hits 
data 

Number of 
genetic 
data sets 

Genetic 
hits 

Differentially 
expressed 
genes 

Median 
size of 
predicted 
network  % Mutations 

Identified 
(number) 

Median rank 

% Successes: 
Inactivated gene  
identified or 
perturbed process 
recovered (number) 

Synthetic 
genetic 
arrays 
(complete 
screen) 13,14 

15 60% 43% 102 20% (3) 21 47% (7) 

Literature 
(incomplete 
data) 1 

86 95% 56% 61 26% (22) 4 40% (34) 

Synthetic 
genetic 
arrays 
(complete 
screen)  
and 
literature 
(incomplete 
data) 

101 80% 54% 64 25% (25) 4 41% (41) 

 

Setting γ value 

The choice of γ primarily determines the size of the output network.  Higher γ values will 

identify more connections between the genetic hits and the differentially expressed genes, 

but these connections will be of lower probability and therefore more speculative 

(Supplementary Note Figure 1).  For the datasets with which we worked the effective γ 

values ranged between 7 and 20.    

To identify suitable values for γ, we recommend running ResponseNet with γ values 

ranging between 5 and 20.  For each of the output networks compute the fraction of input, 

 13
Nature Genetics: doi:10.1038/ng.337



namely genetic hits and differentially expressed genes, that are incorporated into the 

network, as well as the percentage of low probability edges (weights ≤ 0.3).  The best γ 

value is the minimal value with which a significant fraction (at least 30%) of the input is 

incorporated while the percentage of low probability edges remains small. 

To asses the performance of the ResponseNet algorithm we set γ to 10 in order to restrict 

solutions to relatively high-probability sub-networks.  To analyze the α-syn data we used 

a slightly higher value of γ because the size of α-syn input sets is bigger than the median 

size of the validation set.  In fact, the number of predicted proteins for the α-syn data with 

γ = 12 is 106, which is very close to the median number of predicted proteins for the 

validation set which was 102 predicted proteins  when γ =10. 

The effect on the α-syn network of varying γ value between 10 and 19 (for γ<10 the flow 

value was equal to zero, resulting in no output network) is presented in Supplementary 

Note Figure 1A, B and C. As shown in Supplementary Note Figure 1A, higher γ values 

incorporate more genetic hits and differentially expressed genes into the output networks, 

and the number of intermediary nodes increases.  For example, upon setting γ to 19, the 

output network connects all the genetic hits (70/70, where 70 corresponds to the number 

of genetic hits in the interactome) and most of the differentially expressed genes 

(437/441, where 441 corresponds to the number of differentially expressed genes in the 

interactome) via 225 intermediary proteins.  These numbers are about twice the numbers 

obtained with γ=12.  The downside is that as γ increases the percentage of high 

confidence interactions (weights ≥ 0.7) in the network decreases, while the percentage of 

low confidence interactions (weights ≤ 0.3) increases as shown in Supplementary Note 

Figure 1B.  For example, with γ=12 only two low probability edges were included in the 
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output (0.007%).  By contrast, with γ=19 there are 38 low confidence edges in the output 

network (0.05 %).  Supplementary Note Figure 1C shows that more than 90% of the 

network proteins reported in the paper based on γ=12 also appear in networks created 

upon setting γ to values >12.  The selection of γ=12 for the analysis of α-syn data was 

therefore a good compromise between having a concise network with only 2 low 

confidence interactions and including a big enough subset of the genetic hits (49% 

[34/70]) and the differentially expressed genes (38% [166/441]). 

 

Genetic overexpression screen of a yeast model for α-synuclein 
pathobiology 
To explore the nature of α-syn toxicity we conducted an unbiased genome wide screen 

for genes that when overexpressed modify α-syn toxicity in yeast.  The first functional 

cluster of genes to emerge from that screen consisted of genes that affect ER-to-Golgi 

vesicle trafficking.  One of the genes, Ypt1/Rab1, was tested in neuronal models of PD 

and was found to rescue dopaminergic neurons from α-syn toxicity 15.  Here we report for 

the first time the remaining genes identified upon screening an overexpression library of 

> 5000 yeast genes. 

We identified a diverse group of genes including 55 suppressors and 22 enhancers of α-

syn toxicity, many with clear human orthologs (Table 2).  The major classes of genes that 

emerged include vesicle-trafficking genes, kinases and phosphatases, ubiquitin related 

proteins, transcriptional regulators, manganese transporters, and osmolyte biosynthesis 

genes.  Importantly, some of these classes of activity have been associated with PD, yet 
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were not causally linked to α-syn pathobiology.  Below we briefly discuss the gene 

classes and their relevance to PD.   

Vesicle-trafficking genes:  In addition to the genes previously reported (YPT1, YKT6, 

ERV29, GYP8, BRE5, UBP3) we now report 10 additional vesicle-trafficking genes, 

making vesicle-trafficking the largest class we identified.  Following the initial 

identification of this class we found that α-syn represses ER-to-Golgi transport15, and 

inhibits fusion of budded vesicles to Golgi and other target membranes in neuronal 

models of PD 16.  Through these functions α-syn can influence trafficking at synapses: α-

Syn knockout mice have lower pools of synaptic vesicle reserves 17, while neuronal cells 

overexpressing α-syn show an increase in the pool of docked, but not yet fused, secretory 

vesicles 18.  Together these findings illustrate the power of the yeast screen to illuminate 

conserved features of α-syn pathobiology as well as its normal biological function. 

Kinases and phosphatases:  Four phosphatases, including a catalytic subunit of protein 

phosphatase 2A (PP2A), strongly enhanced α-syn toxicity while three kinases and three 

additional phosphatases were potent suppressors.  α-Syn directly activates PP2A in 

dopaminergic cells 19 and the phosphorylation status of α-syn itself has been implicated in 

modulating aggregation, toxicity and PD pathogenesis 20,21.  Also, a yeast casein kinase, 

Yck3, was identified in our screen as a suppressor of α-syn toxicity 22.  Since 

phosphorylation of α-syn on serine129 has been previously linked to inclusion formation 

in neuronal cells 21,22, we tested for phosphorylation of this residue in yeast.  

Immunoblotting confirms that α-syn is indeed phosphorylated in yeast cells 

(Supplementary Note Figure 2), indicating that the machinery to phosphorylate the 
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protein at this residue has been conserved for over a billion years of evolution from yeast 

to human.     

Ubiquitin-related proteins:  Two ubiquitin ligases and five ubiquitin proteases are potent 

modifiers of α-syn toxicity.  These results are consistent with previous data implicating 

ubiquitin-mediated protein degradation pathways in the pathogenesis of 

synucleinopathies, including PD.  The familial PD genes PARKIN and UCH-L1 encode 

an E3 ubiquitin ligase and an ubiquitin protease, respectively, and α-Syn itself and other 

proteins are ubiquitinated in Lewy Bodies 23.  By flow cytometry we did not detect 

changes in steady-state α-syn protein levels in yeast cells overexpressing any of the 

ubiquitin-related genes (Supplementary Figure 2).  Thus, in keeping with recent work in 

mammalian systems for PARKIN and UCH-L1 24-26, our data suggest that these members 

of the ubiquitin system do no act simply by turning over α-syn.        

Transcription/translation regulators:  We identified regulators of diverse cellular 

processes mostly as suppressors of α-syn toxicity.  These include Hap4, which regulates 

respiratory genes; Cup9, which regulates transition metal homeostasis; Fzf1, which 

regulates nitrosative stress and Mga2, which regulates fatty acid metabolism.  Most of the 

abovementioned processes have been associated with Parkinsonism and α-syn toxicity 

previously, establishing that the causal relationships between α-syn toxicity and these 

processes is a fundamental, highly-conserved, feature of cell biology.  That α-syn might 

be related to transition metal homeostasis was previously unknown.   

Manganese transporters:  Many reports link manganese exposure to PD and 

Parkinsonism 27.  Strikingly, of the tens of metal transporters we tested we recovered only 
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three as α-syn modifiers, two of which are Mn2+ transporters (Ccc1, Pmr1).  Ccc1, a 

strong toxicity suppressor, is predicted to detoxify Mn2+ by shunting it to the vacuole.  

Pmr1, a strong toxicity enhancer, is required for Mn2+ transport into Golgi, where Mn2+ is 

needed for glycosylation of secretory proteins 28.   

Trehalose biosynthesis genes: Trehalose is an osmolyte that prevents native proteins from 

misfolding and denatured proteins from aggregating 29, and has been proposed as a 

potential therapeutic for polyglutamine diseases 30.  We found that three suppressors of α-

syn toxicity are related to trehalose biosynthesis.  A recent report has shown the efficacy 

of trehalose in promoting the clearance of misfolded mutant α-syn 31.  

 

Detailed analysis of cellular pathways perturbed by α-synuclein 
The output of ResponseNet consisted of 15 connected components revealing several 

pathways that underlay the cellular response to α-syn toxicity (Supplementary Figure 

3A).  Below we focus on the main implicated pathways, and describe the proteins 

predicted by ResponseNet in the context of their connected component.   

Ubiquitin-related pathways 

The presence of the ubiquitin-related pathways is in accordance with previous evidence 

of the pathogenesis of Parkinson Disease (PD). Indeed, two of the familial PD genes are a 

ubiquitin protein ligase (PARKIN) 32 and a ubiquitin C-terminal hydrolase (UCH-L1) 33.  

The algorithm identifies three connected components linked to ubiquitin-related 

pathways. 
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1. Connected component B.  The genetic hits Hrd1 and Cdc4 are ubiquitin-protein 

ligases, while Ubp7 is an ubiquitin protease.  ResponseNet connected these hits to the 

following ubiquitin-related proteins: (i) Cdc48, an ER ATPase that participates in 

retrotranslocation of ubiquitinated proteins from the ER to the cytosol for degradation 

by the proteasome; (ii) Ubi4, the ubiquitin protein; (iii) Hse1, required for sorting of 

ubiquitinated proteins into vesicles prior to vacuolar degradation; (iv) Tec1, a 

transcription factor that is regulated by ubiquitination 34; (v) Spt23, an ER localized 

transcription factor that is activated by ubiquitin/proteasome-dependent processing 

followed by nuclear targeting.   Ubi4 was also 4-fold up-regulated in response to α-

syn, suggesting it may indirectly contribute to positive feedback regulation.   

2. Connected component C.  Ubp3 and Bre5, two suppressors of α-syn toxicity, form a 

deubiquitination complex that co-regulates anterograde and retrograde transport 

between ER and Golgi apparatus 35.  ResponseNet identified their interaction, and 

also connected them to Sir4, suggesting that they may disrupt Sir4 silencing activity 

36.  Sir4 was connected to Rap1, which was assigned as regulating the expression of 

11 genes: three down- and 8 up-regulated, keeping with the known role of Rap1 as 

both activator and repressor. 

3. Connected component E.  The regulation of the genetic hits Mga2 and Mks1 

involves ubiquitin.  Mga2 is closely related to Spt23 (described above), and similarly 

regulates Ole1 transcription 37.  Like Spt23, Mga2 is an ER localized transcription 

factor that is activated by ubiquitin/proteasome-dependent processing followed by 

nuclear targeting 38.  ResponseNet predicted Rsp5, the ubiquitin-protein ligase that 

activates both Mga2 and Spt23 39.   
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The genetic enhancer Mks1 is involved in retrograde mitochondria-to-nucleus 

signaling.  ResponseNet predicted Grr1, a component of the SCF E3 ubiquitin-ligase 

complex, which regulates Mks1 by its polyubiquitination and degradation 40.  

Interestingly, ResponseNet also predicted Rtg2, which regulates both retrograde 

mitochondria-to-nucleus signaling and the TOR pathway.  We validated the 

involvement of the TOR pathway in the response to α-syn in the main text.  

The relations identified by ResponseNet demonstrate the extent at which ubiquitin-related 

pathways can affect diverse cellular processes.     

Vesicle trafficking pathways 

α-syn was previously shown to repress ER-to-Golgi transport 15 and to inhibit fusion of 

budded vesicles to Golgi and other target membranes in neuronal models of PD 16. Below 

we describe the two connected components mainly related to vesicle trafficking that were 

identified by ResponseNet.  

1. Connected component A.  In relation with the v-SNARE protein and genetic 

suppressor Ykt6 ResponseNet predicted (i) Sed5, a t-SNARE required for ER-to-

Golgi vesicle trafficking; (ii) Bet1, a v-SNARE required for ER-to-Golgi vesicle 

trafficking; (iii)Vam3, functioning in vacuolar protein trafficking; (iv) Nyv1, a v-

SNARE component of the vacuolar SNARE complex involved in vesicle fusion; (v) 

Atg8, a protein required for autophagy that participates in multiple membrane 

trafficking processes 41; (vi) Ssa3, a chaperone protein whose over-expression has 

been shown to be protective towards α-syn toxicity 42.  In relation with the genetic 

suppressor and ER-to-Golgi Ras-like GTPase Ypt1, ResponseNet predicted Bet3 that 

acts in targeting and fusion of ER-to-Golgi transport vesicles, and is also a component 
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of part of transport protein particle (TRAPP) complex.  Downstream of Bet3 

ResponseNet predicted Hsp82, the molecular chaperone and Hap1, the Hsp82 client 

transcription factor 43.  Hap1 is responsible for heme-dependent activation of many 

genes, and also plays a role in sterol metabolism, which we validated to be perturbed 

by α-syn.   

2. Connected component C: The suppressor Sec21 and Tif4632 were predicted by 

ResponseNet to target the same transcriptional response.  ResponseNet predicted (i) 

Arf1, a RAS-like GTPase involved in regulation of coated vesicle formation in Golgi; 

(ii) Rvs167, an actin-associated protein involved in endocytosis; and (iii) Pab1, a 

poly(A)-binding protein.  The interaction between Pab1 and Arf1, selected by 

ResponseNet, has been reported to provide an unexpected link between COPI vesicles 

and mRNA and to suggest that ER-Golgi shuttle might be involved in concentrating 

mRNA at the ER 44.  This again demonstrates the capability of ResponseNet to 

identify hidden important connections among genetic hits. 

Cell cycle and meiosis 

Cell cycle regulation has been suggested to play part in neuronal cell death in PD 45,46. 

Many proteins predicted by ResponseNet have important functions in cell cycle 

processes, including the transcription factors Swi5, Swi6, Mbp1 and Swi4.  In particular, 

ResponseNet identified connected component D and G, which almost exclusively 

composed of cell cycle and meiosis related proteins:   

1. Connected component D:  The genetic suppressor Cdc5 is a protein kinase that plays 

an important role in controlling cell-cycle-dependent gene expression during mitosis.  

Responsenet predicted its substrates Fkh2 and Ndd1, the cell cycle regulators which 
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form the Mcm1-Fkh2-Ndd1 transcription factor complex 47, and also predicted 

Mcm1.   

The genetic suppressor Ime2 is a serine/threonine protein kinase involved in 

activation of meiosis.  ResponseNet predicted (i) Ime1, the master regulator of 

meiosis, that is activated by Ime2; (ii) Cdc6, and ATP-binding protein required for 

DNA replication, which Ime2 is known to stabilize 48; (iii) Orc2, a subunit of the 

origin recognition complex which directs DNA replication; (iv) Orc3, another subunit 

of the origin recognition complex; (v) Abf1, a DNA binding protein that functions in 

DNA replication, and (vi) Sum1, a transcriptional repressor required for mitotic 

repression of sporulation-specific genes.     

The genetic enhancer Matalpha1 is a transcriptional regulator involved in regulation 

of mating-type-specific gene expression.  ResponseNet connected it to the 

transcription factor Mcm1, which is its main target. 

The genetic suppressor Stb3 is known to interact with Sin3.  ResponseNet predicted 

(i) Sin3, a histone deacetylase that regulates several processes, including meiosis; and 

(ii) Ume6, a key transcriptional regulator of early meiotic genes that also forms a 

complex with Ime1, also predicted by ResponseNet (see above).   

2. Connected component G:  The genetic suppressor Mum2 is essential for meiotic 

DNA replication, and is known to interact with Orc2 (predicted by ResponseNet).  

ResponseNet predicted (i) Tid3, a kinetochore associated protein involved in 

chromosome segregation and spindle checkpoint; (ii) Dam1, another kinetochore 

associated protein that aids in chromosome segregation, and (iii) Cbf1, a kintechore 

localized transcription factor.   
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Analysis of cellular pathways perturbed by α-syn, excluding general 
stress response genes from the transcriptional data  

In an effort to exclude non-specific stress response from our predictions, we ran 

ResponseNet with the complete genetic data, but using only a subset of the transcriptional 

data from which 111 environmental stress response genes 49 were excluded.  This resulted 

in an almost identical network. The main difference was in the pathway downstream the 

genetic hit Ykt6.  Ykt6 is predicted to interact indirectly with Tlg2 and this interaction is 

absent in the reference network.  Interestingly Tlg2 deletion has previously been 

identified as an enhancer of α-syn toxicity 50.  

The list of all the predicted genes with the associated flow values and their interactors is 

accessible at  

http://fraenkel.mit.edu/ResponseNet/ResponseNet_asyn_noESR.php  Alpha-synuclein 

(no ESR). 

 

Yeast Strains and Media 

Yeast strains used include W303 with α-syn integrated into HIS3 and  

TRP1 loci (IntTox): MATa can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1  

ade2-1 pRS303Gal-α-synWTYFPpRS304Gal-α-synWT-YFP; W303 with a-syn  

integrated into TRP1 and URA3 loci (HiTox): MATa can1-100  

his3-11,15 leu2-3,112 trp1-1 ura3-1 ade2-1 pRS304Gal-α-synWT-GFP  

pRS306Gal-α-synWT-GFP; W303 with one copy of a-syn integrated into TRP1  

locus (1x a-syn): MATa can1-100 his3-11,15 leu2-3,112 trp1-1 ura3-1  

ade2-1 pRS304Gal-α-synWTGFP; W303 with two copies of empty vector  

integrated into TRP1 and URA3 loci (2x vector): MATa can1-100  
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his3-11,15 leu2-3,112 trp1-1 ura3-1 ade2-1 pRS304Gal pRS306Gal; and  

W303 with YFP integrated into HIS3 locus: MATa can1-100 his3-11,15  

leu2-3,112 trp1-1 ura3-1 ade2-1 pRS303Gal-YFP. Strains were manipulated  

and media prepared using standard techniques. 

Immunoblotting 

Yeast lysates were subjected to SDS/PAGE (4-12% gradient, Invitrogen) and transferred 

to a PVDF membrane (Invitrogen). Membranes were blocked with 5% nonfat dry milk in 

PBS for 1 hr at room temperature. Primary antibody incubations were performed 

overnight at 4°C or at room temperature for 1-2 hours. After washing with PBS, 

membranes were incubated with a horseradish peroxidase-conjugated secondary antibody 

for 1 hour at room temperature, followed by washing in PBS+0.1% Tween 20 (PBST). 

Proteins were detected with SuperSignal West Dura (Pierce).  Phosphoglycerate kinase 1 

(Pgk1) mouse monoclonal antibody was used at 1:5000.  Hsp26 rabbit polyclonal 

antibody (gift from Dr. Johannes Buchner) was used at 1:5000.  Hsp104 mouse 

monoclonal antibody (4B; 51) was used at 1:5000.  S-nitosocysteine rabbit polyclonal 

antibody (Sigma) was used at 1:10,000. 
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Supplementary Note Figure 1. Characterization of the solutions obtained for the α-
syn data upon varying the parameter γ.  Values for γ ranged between 10 and 19 with 
increments of 0.5.  For each value of γ the α-syn data was solved using ResponseNet.  
A. The relationship between γ and the number of genetic hits, transcriptional data and 
predicted nodes connected via ResponseNet.  Higher γ values incorporate more genetic 
hits and differentially expressed genes into the output networks, and the number of 
intermediary nodes increases.  
B. The relationship between γ and the frequency of high or low confidence interactions.  
As γ increases the percentage of high confidence interactions (weights ≥ 0.7) in the 
network decreases, while the percentage of low confidence interactions (weights ≤ 0.3) 
increases.
C. The relationship between γ and the sensitivity score. We used our preferred solution 
for α-syn network (γ=12) as a gold standard to calculate the sensitivity score. The 
network proteins identified with γ=12 also appear in networks created upon setting γ to 
values >12.
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Supplementary Note Figure 2. α-syn is phosphorylated in yeast cells. To check if α-
syn is phosphorylated on serine 129  in yeast as it is in neuronal cells, lysates of yeast 
cells expressing wild-type or S129A mutant α-synuclein were subjected to 
immunoblotting with antibodies against total α-syn or α-syn phosphorylated at serine 
129. 
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Supplementary Table 1A: Measured response to cellular perturbation.  
 

Perturbationa Transcriptional Datab Genetic 
datac Overlap P-valued 

 Up-
regulated 

Down-
regulated Total  Up- 

regulated 
Down-

regulated Total  

Growth arrest  
(HU) 1,2 51 8 59 86 0 0 0 1 

DNA damage  
(MMS) 3,4 152 46 198 1448 34 9 43 0.81 

ER stress 
(tunicamycin) 1,5  157 43 200 127 4 1 5 0.42 

Fatty acid 
metabolism  
(oleate) 6,7 

- - 269e 103 - - 9 4.1*10-2 

ATP synthesis block 
(arsenic) 8 - - 828e 50 - - 9 0.25 

Protein biosynthesis 
(cycloheximide)1,2  6 14 20 164 0 0 0 1 

Gene inactivation, 
screen complete  
(24 data sets 1,9-11)f 

- - 27 130 - - 0 1 

 

Gene inactivation, 
screen incomplete 
(149 data sets)f 

- - 24 12 - - 0 1 

a If no citation given, the transcriptional data is taken from 1 and the genetic data from 9-

11. 
b Number of differentially expressed genes defined as those showing at least a 2-fold 
change in expression following the perturbation or as defined in original papers. 
c Number of genes whose genetic manipulation affects the phenotype of perturbed cells 
relative to wild type. 
d Hypergeometric p-values are calculated considering 6000 genes. 
e Signs were absent in the published transcriptional data. 
f  Median values are shown. 
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Supplementary Table 1B: GO annotation enrichment for combined perturbations.

Set Type Ontology GO_term Cluster Background P-value
frequency frequency

Differentially Expressed process carboxylic acid metabolic process 216, 7.1% 319, 4.4% 8.00E-19
Differentially Expressed process organic acid metabolic process 216, 7.1% 319, 4.4% 8.00E-19
Differentially Expressed process amino acid and derivative metabolic process 150, 4.9% 206, 2.8% 4.70E-17
Differentially Expressed process amino acid metabolic process 138, 4.5% 188, 2.6% 4.81E-16
Differentially Expressed process nitrogen compound metabolic process 173, 5.7% 253, 3.5% 2.70E-15
Differentially Expressed process amine metabolic process 160, 5.3% 232, 3.2% 1.54E-14
Differentially Expressed process amino acid biosynthetic process 85, 2.8% 107, 1.5% 1.28E-12
Differentially Expressed process amine biosynthetic process 89, 2.9% 116, 1.6% 1.30E-11
Differentially Expressed process nitrogen compound biosynthetic process 89, 2.9% 117, 1.6% 3.26E-11
Differentially Expressed process response to chemical stimulus 241, 7.9% 408, 5.6% 2.78E-10
Differentially Expressed process sulfur metabolic process 57, 1.9% 68, 0.9% 1.05E-09
Differentially Expressed process response to stimulus 419, 13.8% 794, 10.9% 1.59E-08
Differentially Expressed process glutamine family amino acid metabolic process 38, 1.2% 42, 0.6% 6.07E-08
Differentially Expressed process response to toxin 29, 1.0% 30, 0.4% 2.18E-07
Differentially Expressed process vitamin metabolic process 67, 2.2% 93, 1.3% 3.13E-06
Differentially Expressed process water-soluble vitamin metabolic process 67, 2.2% 93, 1.3% 3.13E-06
Differentially Expressed function oxidoreductase activity 218, 7.2% 276, 3.8% 2.27E-35
Differentially Expressed function oxidoreductase activity, acting on CH-OH group of donors 68, 2.2% 78, 1.1% 3.92E-14
Differentially Expressed function oxidoreductase activity, acting on the CH-OH group of donors, 62, 2.0% 70, 1.0% 1.73E-13

NAD or NADP as acceptor
Differentially Expressed function transporter activity 219, 7.2% 379, 5.2% 3.64E-08
Differentially Expressed function transmembrane transporter activity 171, 5.6% 285, 3.9% 9.37E-08
Differentially Expressed component plasma membrane 173, 5.7% 263, 3.6% 2.85E-13
Differentially Expressed component fungal-type cell wall 83, 2.7% 105, 1.4% 1.37E-12
Differentially Expressed component external encapsulating structure 89, 2.9% 115, 1.6% 1.45E-12
Differentially Expressed component cell wall 89, 2.9% 115, 1.6% 1.45E-12
Differentially Expressed component cytosolic part 129, 4.2% 211, 2.9% 2.12E-06
Genetic Hits process cellular component organization and biogenesis 1261, 45.9% 2225, 30.5% 7.41E-105
Genetic Hits process cellular process 2174, 79.1% 4673, 64.1% 9.82E-99
Genetic Hits process chromosome organization and biogenesis 456, 16.6% 578, 7.9% 5.04E-96
Genetic Hits process biological regulation 640, 23.3% 958, 13.1% 4.94E-83
Genetic Hits process organelle organization and biogenesis 849, 30.9% 1447, 19.8% 6.66E-71
Genetic Hits process regulation of biological process 525, 19.1% 777, 10.7% 1.28E-68
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Genetic Hits process regulation of cellular process 519, 18.9% 766, 10.5% 2.24E-68
Genetic Hits process response to stimulus 512, 18.6% 794, 10.9% 2.78E-56
Genetic Hits process cell cycle 328, 11.9% 455, 6.2% 1.95E-50
Genetic Hits process establishment and/or maintenance of chromatin architecture 210, 7.6% 252, 3.5% 7.38E-49
Genetic Hits process cell cycle process 295, 10.7% 401, 5.5% 5.65E-48
Genetic Hits process transcription, DNA-dependent 361, 13.1% 532, 7.3% 1.26E-45
Genetic Hits process RNA biosynthetic process 362, 13.2% 534, 7.3% 1.31E-45
Genetic Hits process transcription 384, 14.0% 577, 7.9% 1.35E-45
Genetic Hits process response to DNA damage stimulus 196, 7.1% 238, 3.3% 8.59E-44
Genetic Hits process response to endogenous stimulus 204, 7.4% 252, 3.5% 2.13E-43
Genetic Hits process telomere organization and biogenesis 221, 8.0% 281, 3.9% 2.69E-43
Genetic Hits process telomere maintenance 221, 8.0% 281, 3.9% 2.69E-43
Genetic Hits process DNA metabolic process 419, 15.2% 658, 9.0% 1.29E-42
Genetic Hits process cell cycle phase 257, 9.4% 348, 4.8% 8.54E-42
Genetic Hits process response to stress 335, 12.2% 497, 6.8% 5.49E-41
Genetic Hits process chromatin modification 183, 6.7% 222, 3.0% 8.31E-41
Genetic Hits process regulation of nucleobase, nucleoside, 309, 11.2% 457, 6.3% 6.89E-38

nucleotide and nucleic acid metabolic process
Genetic Hits process regulation of cellular metabolic process 349, 12.7% 539, 7.4% 5.84E-37
Genetic Hits process regulation of metabolic process 357, 13.0% 557, 7.6% 1.88E-36
Genetic Hits process mitotic cell cycle 206, 7.5% 271, 3.7% 4.56E-36
Genetic Hits process post-translational protein modification 269, 9.8% 389, 5.3% 3.32E-35
Genetic Hits process regulation of transcription 271, 9.9% 398, 5.5% 1.34E-33
Genetic Hits process protein modification process 333, 12.1% 521, 7.1% 2.46E-33
Genetic Hits process DNA repair 157, 5.7% 193, 2.6% 3.06E-33
Genetic Hits process negative regulation of biological process 195, 7.1% 259, 3.6% 5.93E-33
Genetic Hits process negative regulation of cellular process 194, 7.1% 258, 3.5% 1.23E-32
Genetic Hits process regulation of transcription, DNA-dependent 254, 9.2% 369, 5.1% 1.62E-32
Genetic Hits process regulation of RNA metabolic process 268, 9.8% 396, 5.4% 1.83E-32
Genetic Hits process transcription from RNA polymerase II promoter 246, 9.0% 354, 4.9% 1.85E-32
Genetic Hits process signal transduction 174, 6.3% 225, 3.1% 1.00E-31
Genetic Hits process M phase 187, 6.8% 250, 3.4% 7.93E-31
Genetic Hits process cell communication 188, 6.8% 252, 3.5% 9.67E-31
Genetic Hits process regulation of gene expression 289, 10.5% 444, 6.1% 1.59E-30
Genetic Hits process cellular localization 387, 14.1% 651, 8.9% 3.63E-29
Genetic Hits process localization 573, 20.9% 1060, 14.5% 6.44E-29
Genetic Hits process establishment of cellular localization 365, 13.3% 610, 8.4% 4.50E-28
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Genetic Hits process vesicle-mediated transport 225, 8.2% 331, 4.5% 3.50E-27
Genetic Hits process establishment of localization 544, 19.8% 1010, 13.9% 1.40E-26
Genetic Hits process regulation of biological quality 204, 7.4% 294, 4.0% 2.87E-26
Genetic Hits process chromatin remodeling 125, 4.5% 154, 2.1% 8.43E-26
Genetic Hits process negative regulation of metabolic process 159, 5.8% 213, 2.9% 1.17E-25
Genetic Hits process cytoskeleton organization and biogenesis 166, 6.0% 226, 3.1% 1.73E-25
Genetic Hits process nucleobase, nucleoside, nucleotide and nucleic acid metabolic process 842, 30.6% 1717, 23.5% 2.04E-25
Genetic Hits process negative regulation of cellular metabolic process 158, 5.7% 212, 2.9% 2.41E-25
Genetic Hits process regulation of cell cycle 131, 4.8% 165, 2.3% 2.48E-25
Genetic Hits process negative regulation of nucleobase, nucleoside, 140, 5.1% 181, 2.5% 4.62E-25

nucleotide and nucleic acid metabolic process
Genetic Hits process growth 117, 4.3% 143, 2.0% 1.29E-24
Genetic Hits process transport 529, 19.3% 990, 13.6% 1.57E-24
Genetic Hits process primary metabolic process 1498, 54.5% 3388, 46.5% 2.51E-24
Genetic Hits process intracellular signaling cascade 123, 4.5% 155, 2.1% 1.30E-23
Genetic Hits process metabolic process 1594, 58.0% 3654, 50.1% 2.37E-23
Genetic Hits process intracellular transport 324, 11.8% 551, 7.6% 1.36E-22
Genetic Hits process cellular metabolic process 1548, 56.3% 3544, 48.6% 2.61E-22
Genetic Hits process developmental process 230, 8.4% 359, 4.9% 3.35E-22
Genetic Hits process chromatin assembly or disassembly 99, 3.6% 118, 1.6% 3.53E-22
Genetic Hits process regulation of transcription from RNA polymerase II promoter 163, 5.9% 231, 3.2% 9.31E-22
Genetic Hits process reproduction 213, 7.8% 328, 4.5% 1.69E-21
Genetic Hits process negative regulation of transcription 124, 4.5% 162, 2.2% 3.31E-21
Genetic Hits process regulation of cell size 96, 3.5% 115, 1.6% 4.15E-21
Genetic Hits process biopolymer metabolic process 1101, 40.1% 2407, 33.0% 1.58E-20
Genetic Hits process negative regulation of transcription, DNA-dependent 118, 4.3% 154, 2.1% 3.80E-20
Genetic Hits process negative regulation of RNA metabolic process 118, 4.3% 155, 2.1% 1.01E-19
Genetic Hits process macromolecule metabolic process 1319, 48.0% 2996, 41.1% 4.90E-18
Genetic Hits process secretory pathway 161, 5.9% 240, 3.3% 8.17E-18
Genetic Hits process chromatin assembly 85, 3.1% 103, 1.4% 8.62E-18
Genetic Hits process secretion by cell 163, 5.9% 246, 3.4% 3.21E-17
Genetic Hits process secretion 163, 5.9% 246, 3.4% 3.21E-17
Genetic Hits process cellular structure morphogenesis 111, 4.0% 149, 2.0% 3.96E-17
Genetic Hits process anatomical structure development 111, 4.0% 149, 2.0% 3.96E-17
Genetic Hits process cell morphogenesis 111, 4.0% 149, 2.0% 3.96E-17
Genetic Hits process anatomical structure morphogenesis 111, 4.0% 149, 2.0% 3.96E-17
Genetic Hits process response to chemical stimulus 242, 8.8% 408, 5.6% 8.36E-17

Nature Genetics: doi:10.1038/ng.337



Genetic Hits process mitosis 99, 3.6% 129, 1.8% 1.17E-16
Genetic Hits process DNA packaging 89, 3.2% 112, 1.5% 1.39E-16
Genetic Hits process M phase of mitotic cell cycle 100, 3.6% 131, 1.8% 1.50E-16
Genetic Hits process gene silencing 81, 2.9% 99, 1.4% 2.12E-16
Genetic Hits process covalent chromatin modification 76, 2.8% 91, 1.2% 2.61E-16
Genetic Hits process histone modification 76, 2.8% 91, 1.2% 2.61E-16
Genetic Hits process biopolymer modification 355, 12.9% 656, 9.0% 2.74E-16
Genetic Hits process cell growth 72, 2.6% 85, 1.2% 4.66E-16
Genetic Hits process establishment and/or maintenance of cell polarity 93, 3.4% 120, 1.6% 4.82E-16
Genetic Hits process DNA replication 102, 3.7% 137, 1.9% 1.52E-15
Genetic Hits process meiotic cell cycle 103, 3.7% 139, 1.9% 1.84E-15
Genetic Hits process M phase of meiotic cell cycle 103, 3.7% 139, 1.9% 1.84E-15
Genetic Hits process meiosis 103, 3.7% 139, 1.9% 1.84E-15
Genetic Hits process filamentous growth 78, 2.8% 97, 1.3% 7.40E-15
Genetic Hits process heterochromatin formation 76, 2.8% 94, 1.3% 1.10E-14
Genetic Hits process negative regulation of gene expression, epigenetic 76, 2.8% 94, 1.3% 1.10E-14
Genetic Hits process chromatin silencing 76, 2.8% 94, 1.3% 1.10E-14
Genetic Hits process regulation of gene expression, epigenetic 78, 2.8% 99, 1.4% 6.90E-14
Genetic Hits process asexual reproduction 69, 2.5% 84, 1.2% 7.43E-14
Genetic Hits process cell budding 69, 2.5% 84, 1.2% 7.43E-14
Genetic Hits process establishment of cell polarity 83, 3.0% 108, 1.5% 1.03E-13
Genetic Hits process Golgi vesicle transport 115, 4.2% 168, 2.3% 3.94E-13
Genetic Hits process RNA elongation 53, 1.9% 61, 0.8% 2.76E-12
Genetic Hits process small GTPase mediated signal transduction 53, 1.9% 61, 0.8% 2.76E-12
Genetic Hits process regulation of mitosis 51, 1.9% 58, 0.8% 3.22E-12
Genetic Hits process cell cycle checkpoint 48, 1.7% 54, 0.7% 8.47E-12
Genetic Hits process actin filament-based process 82, 3.0% 111, 1.5% 8.85E-12
Genetic Hits process microtubule-based process 78, 2.8% 104, 1.4% 9.95E-12
Genetic Hits process cell division 156, 5.7% 255, 3.5% 1.19E-11
Genetic Hits process protein amino acid phosphorylation 76, 2.8% 101, 1.4% 1.63E-11
Genetic Hits process interphase 84, 3.1% 116, 1.6% 2.86E-11
Genetic Hits process multi-organism process 93, 3.4% 133, 1.8% 3.91E-11
Genetic Hits process interphase of mitotic cell cycle 83, 3.0% 115, 1.6% 5.62E-11
Genetic Hits process actin cytoskeleton organization and biogenesis 78, 2.8% 106, 1.5% 5.91E-11
Genetic Hits process reproduction of a single-celled organism 126, 4.6% 199, 2.7% 1.38E-10
Genetic Hits process cellular lipid metabolic process 138, 5.0% 224, 3.1% 2.07E-10
Genetic Hits process chromosome segregation 84, 3.1% 119, 1.6% 3.07E-10
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Genetic Hits process pseudohyphal growth 52, 1.9% 63, 0.9% 3.99E-10
Genetic Hits process RNA elongation from RNA polymerase II promoter 47, 1.7% 55, 0.8% 4.34E-10
Genetic Hits process biopolymer catabolic process 166, 6.0% 284, 3.9% 5.03E-10
Genetic Hits process DNA-dependent DNA replication 76, 2.8% 105, 1.4% 5.36E-10
Genetic Hits process sexual reproduction 83, 3.0% 118, 1.6% 5.87E-10
Genetic Hits process conjugation 83, 3.0% 118, 1.6% 5.87E-10
Genetic Hits process conjugation with cellular fusion 83, 3.0% 118, 1.6% 5.87E-10
Genetic Hits process membrane organization and biogenesis 121, 4.4% 192, 2.6% 7.09E-10
Genetic Hits process lipid metabolic process 143, 5.2% 237, 3.3% 7.83E-10
Genetic Hits process double-strand break repair 48, 1.7% 58, 0.8% 2.79E-09
Genetic Hits process macromolecule localization 204, 7.4% 371, 5.1% 3.77E-09
Genetic Hits process vacuolar transport 82, 3.0% 119, 1.6% 4.75E-09
Genetic Hits process protein amino acid deacetylation 26, 0.9% 26, 0.4% 1.30E-08
Genetic Hits process response to abiotic stimulus 81, 2.9% 119, 1.6% 1.76E-08
Genetic Hits process telomeric heterochromatin formation 47, 1.7% 58, 0.8% 2.09E-08
Genetic Hits process chromatin silencing at telomere 47, 1.7% 58, 0.8% 2.09E-08
Genetic Hits process microtubule cytoskeleton organization and biogenesis 60, 2.2% 81, 1.1% 3.41E-08
Genetic Hits process sister chromatid segregation 49, 1.8% 62, 0.9% 4.25E-08
Genetic Hits process response to drug 85, 3.1% 129, 1.8% 7.77E-08
Genetic Hits process actin filament organization 48, 1.7% 61, 0.8% 9.06E-08
Genetic Hits process histone deacetylation 24, 0.9% 24, 0.3% 9.35E-08
Genetic Hits process non-recombinational repair 29, 1.1% 31, 0.4% 1.29E-07
Genetic Hits process response to pheromone 66, 2.4% 94, 1.3% 1.77E-07
Genetic Hits process invasive growth in response to glucose limitation 38, 1.4% 45, 0.6% 1.86E-07
Genetic Hits process nucleotide-excision repair 38, 1.4% 45, 0.6% 1.86E-07
Genetic Hits process vacuole organization and biogenesis 51, 1.9% 67, 0.9% 2.04E-07
Genetic Hits process RNA metabolic process 496, 18.0% 1069, 14.7% 2.07E-07
Genetic Hits process Ras protein signal transduction 34, 1.2% 39, 0.5% 3.02E-07
Genetic Hits process cellular component assembly 244, 8.9% 475, 6.5% 3.13E-07
Genetic Hits process reproductive process 113, 4.1% 188, 2.6% 3.23E-07
Genetic Hits process mitotic cell cycle checkpoint 28, 1.0% 30, 0.4% 3.25E-07
Genetic Hits process meiosis I 54, 2.0% 73, 1.0% 3.79E-07
Genetic Hits process mitotic sister chromatid segregation 46, 1.7% 59, 0.8% 4.04E-07
Genetic Hits process lipid biosynthetic process 83, 3.0% 128, 1.8% 4.44E-07
Genetic Hits process cell surface receptor linked signal transduction 43, 1.6% 54, 0.7% 4.60E-07
Genetic Hits process phosphorylation 96, 3.5% 154, 2.1% 4.65E-07
Genetic Hits process post-Golgi vesicle-mediated transport 52, 1.9% 70, 1.0% 6.32E-07
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Genetic Hits process cellular homeostasis 83, 3.0% 129, 1.8% 7.92E-07
Genetic Hits process G2/M transition of mitotic cell cycle 31, 1.1% 35, 0.5% 8.31E-07
Genetic Hits process cytokinesis 75, 2.7% 114, 1.6% 1.19E-06
Genetic Hits process modification-dependent macromolecule catabolic process 96, 3.5% 156, 2.1% 1.28E-06
Genetic Hits process phosphorus metabolic process 122, 4.4% 210, 2.9% 1.30E-06
Genetic Hits process phosphate metabolic process 122, 4.4% 210, 2.9% 1.30E-06
Genetic Hits process endosome transport 40, 1.5% 50, 0.7% 1.51E-06
Genetic Hits process spindle organization and biogenesis 38, 1.4% 47, 0.6% 2.27E-06
Genetic Hits process homeostatic process 84, 3.1% 133, 1.8% 2.41E-06
Genetic Hits process protein localization 170, 6.2% 316, 4.3% 2.68E-06
Genetic Hits process protein targeting to vacuole 52, 1.9% 72, 1.0% 3.44E-06
Genetic Hits process negative regulation of transcription from RNA polymerase II promoter 47, 1.7% 63, 0.9% 3.50E-06
Genetic Hits process protein modification by small protein conjugation 59, 2.1% 85, 1.2% 3.53E-06
Genetic Hits process cellular protein catabolic process 97, 3.5% 161, 2.2% 5.27E-06
Genetic Hits process modification-dependent protein catabolic process 91, 3.3% 149, 2.0% 6.15E-06
Genetic Hits process ubiquitin-dependent protein catabolic process 91, 3.3% 149, 2.0% 6.15E-06
Genetic Hits process protein catabolic process 103, 3.7% 174, 2.4% 6.76E-06
Genetic Hits process protein targeting 134, 4.9% 240, 3.3% 6.94E-06
Genetic Hits process endocytosis 59, 2.1% 86, 1.2% 7.15E-06
Genetic Hits process membrane invagination 64, 2.3% 96, 1.3% 9.55E-06
Genetic Hits process proteolysis 105, 3.8% 179, 2.5% 9.62E-06
Genetic Hits process proteolysis involved in cellular protein catabolic process 92, 3.3% 152, 2.1% 9.67E-06
Genetic Hits function transcription regulator activity 207, 7.5% 329, 4.5% 1.19E-18
Genetic Hits function DNA binding 161, 5.9% 239, 3.3% 1.84E-18
Genetic Hits function nucleoside-triphosphatase activity 163, 5.9% 254, 3.5% 1.71E-15
Genetic Hits function pyrophosphatase activity 171, 6.2% 274, 3.8% 1.49E-14
Genetic Hits function hydrolase activity, acting on acid anhydrides 171, 6.2% 274, 3.8% 1.49E-14
Genetic Hits function hydrolase activity, acting on acid anhydrides, 171, 6.2% 274, 3.8% 1.49E-14

in phosphorus-containing anhydrides
Genetic Hits function protein binding 316, 11.5% 594, 8.1% 4.14E-13
Genetic Hits function enzyme regulator activity 120, 4.4% 188, 2.6% 1.03E-10
Genetic Hits function transferase activity 355, 12.9% 703, 9.6% 1.22E-10
Genetic Hits function ATPase activity 123, 4.5% 195, 2.7% 1.79E-10
Genetic Hits function protein kinase activity 88, 3.2% 129, 1.8% 8.00E-10
Genetic Hits function kinase activity 124, 4.5% 202, 2.8% 2.33E-09
Genetic Hits function phosphotransferase activity, alcohol group as acceptor 108, 3.9% 171, 2.3% 4.68E-09
Genetic Hits function protein deacetylase activity 28, 1.0% 29, 0.4% 1.46E-08
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Genetic Hits function histone deacetylase activity 28, 1.0% 29, 0.4% 1.46E-08
Genetic Hits function ATPase activity, coupled 89, 3.2% 136, 1.9% 2.06E-08
Genetic Hits function hydrolase activity 384, 14.0% 800, 11.0% 9.57E-08
Genetic Hits function small conjugating protein ligase activity 50, 1.8% 67, 0.9% 4.54E-07
Genetic Hits function protein serine/threonine kinase activity 56, 2.0% 78, 1.1% 5.16E-07
Genetic Hits function enzyme activator activity 48, 1.7% 64, 0.9% 7.50E-07
Genetic Hits function acid-amino acid ligase activity 54, 2.0% 75, 1.0% 8.77E-07
Genetic Hits function RNA polymerase II transcription factor activity 81, 2.9% 127, 1.7% 1.03E-06
Genetic Hits function deacetylase activity 29, 1.1% 33, 0.5% 2.01E-06
Genetic Hits function cytoskeletal protein binding 42, 1.5% 55, 0.8% 3.29E-06
Genetic Hits function sequence-specific DNA binding 51, 1.9% 72, 1.0% 6.32E-06
Genetic Hits function ubiquitin-protein ligase activity 46, 1.7% 63, 0.9% 7.19E-06
Genetic Hits function small protein conjugating enzyme activity 48, 1.7% 67, 0.9% 9.56E-06
Genetic Hits component cell part 2438, 88.7% 5505, 75.5% 4.23E-100
Genetic Hits component cell 2438, 88.7% 5506, 75.5% 6.30E-100
Genetic Hits component intracellular organelle 1930, 70.2% 4033, 55.3% 7.42E-89
Genetic Hits component organelle 1930, 70.2% 4034, 55.3% 1.06E-88
Genetic Hits component intracellular 2280, 83.0% 5098, 69.9% 5.41E-83
Genetic Hits component intracellular part 2262, 82.3% 5065, 69.5% 1.63E-79
Genetic Hits component membrane-bound organelle 1777, 64.7% 3694, 50.7% 1.71E-76
Genetic Hits component intracellular membrane-bound organelle 1777, 64.7% 3694, 50.7% 1.71E-76
Genetic Hits component protein complex 746, 27.1% 1230, 16.9% 9.12E-70
Genetic Hits component organelle part 1175, 42.8% 2324, 31.9% 1.60E-51
Genetic Hits component intracellular organelle part 1175, 42.8% 2324, 31.9% 1.60E-51
Genetic Hits component nucleoplasm part 230, 8.4% 315, 4.3% 3.79E-36
Genetic Hits component nucleoplasm 240, 8.7% 337, 4.6% 7.55E-35
Genetic Hits component macromolecular complex 875, 31.8% 1724, 23.6% 1.23E-34
Genetic Hits component nucleus 962, 35.0% 2007, 27.5% 3.89E-26
Genetic Hits component membrane 586, 21.3% 1113, 15.3% 5.62E-26
Genetic Hits component membrane part 365, 13.3% 640, 8.8% 7.79E-23
Genetic Hits component organelle membrane 358, 13.0% 643, 8.8% 9.14E-20
Genetic Hits component endoplasmic reticulum 221, 8.0% 354, 4.9% 1.57E-19
Genetic Hits component chromatin remodeling complex 70, 2.5% 79, 1.1% 1.99E-18
Genetic Hits component chromosome 162, 5.9% 244, 3.3% 1.05E-17
Genetic Hits component cytoplasm 1591, 57.9% 3726, 51.1% 1.62E-17
Genetic Hits component cytoskeletal part 131, 4.8% 188, 2.6% 9.39E-17
Genetic Hits component chromosomal part 142, 5.2% 211, 2.9% 4.08E-16
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Genetic Hits component site of polarized growth 112, 4.1% 156, 2.1% 1.12E-15
Genetic Hits component cytoskeleton 136, 4.9% 202, 2.8% 2.17E-15
Genetic Hits component transcription factor complex 97, 3.5% 131, 1.8% 7.12E-15
Genetic Hits component endomembrane system 199, 7.2% 331, 4.5% 9.59E-15
Genetic Hits component Golgi apparatus 138, 5.0% 210, 2.9% 3.00E-14
Genetic Hits component nuclear envelope-endoplasmic reticulum network 101, 3.7% 141, 1.9% 7.13E-14
Genetic Hits component endoplasmic reticulum part 103, 3.7% 145, 2.0% 9.16E-14
Genetic Hits component Golgi apparatus part 112, 4.1% 163, 2.2% 2.17E-13
Genetic Hits component cellular bud 106, 3.9% 154, 2.1% 1.12E-12
Genetic Hits component nuclear chromosome 123, 4.5% 187, 2.6% 1.41E-12
Genetic Hits component endoplasmic reticulum membrane 92, 3.3% 130, 1.8% 5.65E-12
Genetic Hits component nuclear chromosome part 103, 3.7% 155, 2.1% 1.01E-10
Genetic Hits component cytoplasmic part 1179, 42.9% 2748, 37.7% 1.62E-10
Genetic Hits component cellular bud neck 82, 3.0% 119, 1.6% 1.62E-09
Genetic Hits component nuclear part 527, 19.2% 1129, 15.5% 4.39E-09
Genetic Hits component histone deacetylase complex 28, 1.0% 29, 0.4% 1.15E-08
Genetic Hits component microtubule cytoskeleton 70, 2.5% 100, 1.4% 2.05E-08
Genetic Hits component cell cortex 72, 2.6% 104, 1.4% 2.46E-08
Genetic Hits component organelle lumen 398, 14.5% 829, 11.4% 3.07E-08
Genetic Hits component endosome 67, 2.4% 95, 1.3% 3.17E-08
Genetic Hits component cell cortex part 63, 2.3% 89, 1.2% 9.29E-08
Genetic Hits component incipient cellular bud site 35, 1.3% 41, 0.6% 1.91E-07
Genetic Hits component nuclear chromatin 38, 1.4% 46, 0.6% 2.32E-07
Genetic Hits component nuclear lumen 302, 11.0% 613, 8.4% 2.91E-07
Genetic Hits component spindle 61, 2.2% 87, 1.2% 3.37E-07
Genetic Hits component chromatin 44, 1.6% 58, 0.8% 1.59E-06
Genetic Hits component histone acetyltransferase complex 34, 1.2% 41, 0.6% 1.63E-06
Genetic Hits component endosomal part 26, 0.9% 29, 0.4% 4.28E-06
Genetic Hits component microtubule organizing center 46, 1.7% 63, 0.9% 5.67E-06
Genetic Hits component spindle pole body 46, 1.7% 63, 0.9% 5.67E-06
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Supplementary Table 1C:  GO process and function annotations enriched in >= 20% of the
sets of genetic hits or >= 20% of the sets of differentially expressed genes for the perturbations
with complete genetic screens available.
GO annotation Set type # of enriched sets Median enrichment
Amine biosynthetic process Differentially expressed 8 2.04E-08
Arginine metabolic process Differentially expressed 8 0.000182
Oxidoreductase activity Differentially expressed 8 2.09E-05
Arginine biosynthetic process Differentially expressed 7 9.87E-06
Glutamine family amino acid biosynthetic process Differentially expressed 7 0.000881
Organic acid metabolic process Differentially expressed 7 1.38E-06
Structural constituent of cell wall Differentially expressed 6 6.95E-05
Sulfur compound biosynthetic process Differentially expressed 6 7.64E-05
Sulfur metabolic process Differentially expressed 6 2.27E-07
Vitamin biosynthetic process Differentially expressed 6 2.39E-05
Biological regulation Genetic Hits 23 1.59E-11
Response to stimulus Genetic Hits 23 1.73E-09
Regulation of cellular process Genetic Hits 22 2.69E-10
Response to stress Genetic Hits 21 7.14E-10
Cell cycle Genetic Hits 20 2.39E-11
Cell cycle phase Genetic Hits 20 2.84E-12
Developmental process Genetic Hits 20 4.85E-07
Mitotic cell cycle Genetic Hits 20 1.26E-09
M phase Genetic Hits 19 1.88E-13
Mitosis Genetic Hits 19 2.26E-08
Regulation of cell cycle Genetic Hits 19 2.61E-07
DNA metabolic process Genetic Hits 18 2.31E-27
Sister chromatid segregation Genetic Hits 18 8.71E-07
Telomere maintenance Genetic Hits 18 7.59E-14
Chromosome segregation Genetic Hits 17 3.95E-08
DNA packaging Genetic Hits 17 1.02E-14
DNA repair Genetic Hits 17 4.71E-13
Protein binding Genetic Hits 17 3.31E-07
response to DNA damage stimulus Genetic Hits 17 1.08E-16
Chromatin remodeling Genetic Hits 16 3.94E-11
DNA recombination Genetic Hits 16 3.49E-09
Double-strand break repair Genetic Hits 16 1.83E-09
Non-recombinational repair Genetic Hits 16 5.72E-10
Post-translational protein modification Genetic Hits 16 1.63E-08
Regulation of metabolic process Genetic Hits 16 3.77E-11
Transcription Genetic Hits 16 1.75E-09
Cell cycle checkpoint Genetic Hits 15 2.04E-07
DNA binding Genetic Hits 15 1.69E-06
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Gene silencing Genetic Hits 15 1.93E-07
Mitotic sister chromatid cohesion Genetic Hits 15 1.50E-08
Negative regulation of cellular process Genetic Hits 15 6.70E-10
Chromatin assembly or disassembly Genetic Hits 14 8.70E-07
Double-strand break repair via nonhomologous end joining Genetic Hits 14 1.43E-05
Meiosis Genetic Hits 14 2.31E-08
Negative regulation of transcription Genetic Hits 14 3.61E-08
Recombinational repair Genetic Hits 14 1.38E-06
Regulation of transcription Genetic Hits 14 4.40E-09
Sister chromatid cohesion Genetic Hits 14 4.95E-08
Cytoskeletal protein binding Genetic Hits 13 3.04E-08
DNA replication Genetic Hits 13 3.02E-10
Histone modification Genetic Hits 13 1.32E-09
Organelle localization Genetic Hits 13 2.07E-06
regulation of DNA recombination Genetic Hits 13 2.76E-06
RNA elongation Genetic Hits 13 7.94E-07
RNA metabolic process Genetic Hits 13 1.08E-07
Chromatin silencing at silent mating-type cassette Genetic Hits 12 1.86E-05
DNA-dependent ATPase activity Genetic Hits 12 1.71E-06
Double-strand break repair via single-strand annealing Genetic Hits 12 4.11E-08
Double-strand break repair via synthesis-dependent strand a Genetic Hits 12 1.04E-06
negative regulation of DNA metabolic process Genetic Hits 12 1.11E-08
negative regulation of DNA recombination Genetic Hits 12 3.18E-05
regulation of DNA metabolic process Genetic Hits 12 4.05E-08
transcription from RNA polymerase II promoter Genetic Hits 12 3.40E-06
Transposition Genetic Hits 12 3.18E-05
Cell development Genetic Hits 11 6.61E-05
Chromatin silencing at telomere Genetic Hits 11 2.10E-06
DNA-dependent DNA replication Genetic Hits 11 6.28E-09
Histone deacetylation Genetic Hits 11 1.93E-05
meiosis I Genetic Hits 11 1.07E-06
Regulation of biological quality Genetic Hits 11 2.60E-05
Regulation of mitosis Genetic Hits 11 8.97E-06
Response to chemical stimulus Genetic Hits 11 9.54E-05
Deacetylase activity Genetic Hits 10 0.000111
Gene conversion at mating-type locus Genetic Hits 10 7.74E-05
Heteroduplex formation Genetic Hits 10 2.23E-05
Histone exchange Genetic Hits 10 1.77E-09
Meiotic recombination Genetic Hits 10 9.24E-06
Mitotic recombination Genetic Hits 10 3.44E-06
negative regulation of DNA replication Genetic Hits 10 5.26E-05
regulation of transcription from RNA polymerase II promoter Genetic Hits 10 3.91E-05
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Telomere maintenance via recombination Genetic Hits 10 0.0001
Transcription regulator activity Genetic Hits 10 6.36E-06
Vesicle-mediated transport Genetic Hits 10 6.63E-05
Cell morphogenesis Genetic Hits 9 0.000142
Cellular localization Genetic Hits 9 1.45E-09
Conjugation Genetic Hits 9 0.000387
DNA replication checkpoint Genetic Hits 9 7.95E-06
Double-strand break repair via break-induced replication Genetic Hits 9 6.41E-06
general RNA polymerase II transcription factor activity Genetic Hits 9 0.000113
Histone methylation Genetic Hits 9 2.14E-06
Meiotic chromosome segregation Genetic Hits 9 1.55E-05
Microtubule motor activity Genetic Hits 9 8.52E-06
Nucleic acid binding Genetic Hits 9 0.000165
Postreplication repair Genetic Hits 9 0.000206
Reproduction Genetic Hits 9 6.81E-05
Tubulin binding Genetic Hits 9 2.64E-12
Vacuolar transport Genetic Hits 9 2.57E-05
Biopolymer catabolic process Genetic Hits 8 0.000146
DNA integrity checkpoint Genetic Hits 8 1.62E-06
Establishment of localization Genetic Hits 8 7.12E-05
Establishment of organelle localization Genetic Hits 8 5.81E-08
Hydrolase activity, acting on carbon-nitrogen (but not peptide) Genetic Hits 8 0.000361
Interphase Genetic Hits 8 1.59E-05
Meiotic gene conversion Genetic Hits 8 2.25E-05
Microtubule-based process Genetic Hits 8 1.74E-15
Motor activity Genetic Hits 8 6.72E-05
Nucleotide-excision repair Genetic Hits 8 2.50E-07
Protein modification by small protein conjugation Genetic Hits 8 0.000344
regulation of DNA replication Genetic Hits 8 6.12E-06
Response to drug Genetic Hits 8 0.000122
Cell communication Genetic Hits 7 9.67E-08
Deoxyribonuclease activity Genetic Hits 7 8.43E-05
DNA replication initiation Genetic Hits 7 0.000197
DNA strand elongation Genetic Hits 7 2.61E-07
Lagging strand elongation Genetic Hits 7 4.68E-05
Methylation Genetic Hits 7 0.00029
Microtubule-based movement Genetic Hits 7 1.69E-07
Mismatch repair Genetic Hits 7 8.37E-05
Nuclear migration Genetic Hits 7 2.13E-08
Protein amino acid acetylation Genetic Hits 7 2.42E-05
Protein kinase activity Genetic Hits 7 0.00061
Pyrophosphatase activity Genetic Hits 7 0.000231
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Response to osmotic stress Genetic Hits 7 0.000103
sequence-specific DNA binding Genetic Hits 7 0.000102
Sex determination Genetic Hits 7 1.86E-05
Signal transducer activity Genetic Hits 7 1.02E-06
single-stranded DNA binding Genetic Hits 7 1.29E-05
Spindle localization Genetic Hits 7 1.14E-07
Aging Genetic Hits 6 0.000386
chromatin silencing at rDNA Genetic Hits 6 0.000223
Cyclin-dependent protein kinase activity Genetic Hits 6 0.00214
DNA topological change Genetic Hits 6 0.00145
Endocytosis Genetic Hits 6 0.00082
Establishment of cell polarity Genetic Hits 6 5.22E-08
Growth Genetic Hits 6 3.27E-10
Histone acetylation Genetic Hits 6 0.000902
Hydrolase activity Genetic Hits 6 2.01E-05
Karyogamy Genetic Hits 6 1.58E-05
Leading strand elongation Genetic Hits 6 1.05E-05
Microtubule depolymerization Genetic Hits 6 0.000849
Microtubule polymerization or depolymerization Genetic Hits 6 5.88E-05
Nucleosome assembly Genetic Hits 6 2.24E-05
Nucleotidyltransferase activity Genetic Hits 6 0.00151
One-carbon compound metabolic process Genetic Hits 6 0.000991
Organelle fusion Genetic Hits 6 8.10E-05
Protein amino acid acylation Genetic Hits 6 0.000131
Protein folding Genetic Hits 6 0.000726
Protein targeting to vacuole Genetic Hits 6 0.000278
Replicative cell aging Genetic Hits 6 0.000342
RNA catabolic process Genetic Hits 6 0.000746
RNA polymerase II transcription elongation factor activity Genetic Hits 6 3.72E-05
Secretion Genetic Hits 6 1.18E-12
Structural constituent of cytoskeleton Genetic Hits 6 0.00184
structure-specific DNA binding Genetic Hits 6 2.46E-05
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Supplementary Table 1D: GO process and function annotations enriched in the combined    
perturbations with complete genetic screens available.   
These are limited to annotations enriched in at least 20% of the sets when analyzed separately.
GO annotation
Oxidoreductase activity Set type Enrichment p-value % in set
Organic acid metabolic process Differentially expressed 6.21E-25 8.28
Amine biosynthetic process Differentially expressed 6.76E-10 7.37
Sulfur metabolic process Differentially expressed 2.77E-11 3.53
Vitamin biosynthetic process Differentially expressed 1.17E-13 2.57
Glutamine family amino acid biosynthetic process Differentially expressed 9.54E-06 1.45
Sulfur compound biosynthetic process Differentially expressed 0.000287 0.91
Arginine metabolic process Differentially expressed 3.08E-06 0.81
Structural constituent of cell wall Differentially expressed 0.000534 0.59
Arginine biosynthetic process Differentially expressed 0.00336 0.49
Biological regulation Differentially expressed 0.00134 0.43
Establishment of localization Genetic Hits 7.92E-35 20.72
Response to stimulus Genetic Hits 4.23E-10 18.55
Developmental process Genetic Hits 2.32E-31 17.25
Regulation of cellular process Genetic Hits 1.37E-15 16.43
RNA metabolic process Genetic Hits 8.48E-29 16.3
DNA metabolic process Genetic Hits 0.00147 16.04
Hydrolase activity Genetic Hits 1.89E-52 14.78
Cellular localization Genetic Hits 6.73E-05 13.44
Transcription Genetic Hits 6.94E-14 12.96
Response to stress Genetic Hits 1.57E-18 12.09
Regulation of metabolic process Genetic Hits 3.80E-26 11.83
Cell cycle Genetic Hits 1.04E-16 11.31
Protein binding Genetic Hits 3.83E-28 11.05
Post-translational protein modification Genetic Hits 2.83E-15 10.1
Cell cycle phase Genetic Hits 2.25E-18 9.1
Cell development Genetic Hits 1.03E-25 9.02
Telomere maintenance Genetic Hits 0.00021 8.76
Regulation of transcription Genetic Hits 3.99E-40 8.67
Vesicle-mediated transport Genetic Hits 4.04E-16 8.58
Response to chemical stimulus Genetic Hits 3.67E-14 7.67
DNA packaging Genetic Hits 1.21E-08 7.54
response to DNA damage stimulus Genetic Hits 6.93E-31 7.46
transcription from RNA polymerase II promoter Genetic Hits 5.08E-32 7.2
M phase Genetic Hits 3.15E-11 7.11
Mitotic cell cycle Genetic Hits 3.53E-20 6.89
Reproduction Genetic Hits 2.27E-19 6.68
Cell morphogenesis Genetic Hits 8.43E-08 6.63
Transcription regulator activity Genetic Hits 7.55E-18 6.59
Pyrophosphatase activity Genetic Hits 4.35E-05 6.46
Regulation of biological quality Genetic Hits 2.10E-07 6.07
Negative regulation of cellular process Genetic Hits 4.13E-11 5.98
DNA binding Genetic Hits 3.18E-15 5.81
DNA repair Genetic Hits 2.42E-12 5.64
Secretion Genetic Hits 8.42E-23 5.59
Biopolymer catabolic process Genetic Hits 7.95E-09 5.55
Cell communication Genetic Hits 0.00191 5.16
regulation of transcription from RNA polymerase II promoter Genetic Hits 2.63E-08 5.12
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Chromatin remodeling Genetic Hits 9.39E-09 4.9
Regulation of cell cycle Genetic Hits 6.94E-18 4.55
Negative regulation of transcription Genetic Hits 3.01E-14 4.55
Meiosis Genetic Hits 6.42E-13 4.12
Chromatin assembly or disassembly Genetic Hits 3.37E-13 4.03
Growth Genetic Hits 8.53E-16 3.56
Mitosis Genetic Hits 9.72E-09 3.56
DNA replication Genetic Hits 4.94E-10 3.38
Protein kinase activity Genetic Hits 5.93E-12 3.3
Response to drug Genetic Hits 5.52E-08 3.3
Establishment of cell polarity Genetic Hits 9.18E-10 3.25
DNA recombination Genetic Hits 2.11E-14 3.21
ATPase activity, coupled Genetic Hits 2.60E-13 3.21
Chromosome segregation Genetic Hits 1.80E-05 3.17
Vacuolar transport Genetic Hits 1.57E-08 3.08
Gene silencing Genetic Hits 6.79E-11 2.95
Microtubule-based process Genetic Hits 5.09E-12 2.78
Histone modification Genetic Hits 8.93E-10 2.78
DNA-dependent DNA replication Genetic Hits 7.58E-14 2.65
Interphase Genetic Hits 1.60E-09 2.65
Conjugation Genetic Hits 1.74E-06 2.39
meiosis I Genetic Hits 0.00302 2.39
Endocytosis Genetic Hits 5.93E-11 2.21
Response to osmotic stress Genetic Hits 2.66E-05 2.08
Protein modification by small protein conjugation Genetic Hits 7.54E-07 1.95
Organelle localization Genetic Hits 0.000126 1.91
Protein targeting to vacuole Genetic Hits 2.00E-11 1.87
Double-strand break repair Genetic Hits 1.93E-07 1.87
Signal transducer activity Genetic Hits 1.03E-10 1.78
Sister chromatid segregation Genetic Hits 6.51E-07 1.69
Cell cycle checkpoint Genetic Hits 2.51E-06 1.69
Cytoskeletal protein binding Genetic Hits 5.74E-08 1.65
Regulation of mitosis Genetic Hits 5.74E-08 1.65
Meiotic recombination Genetic Hits 1.18E-07 1.61
Chromatin silencing at telomere Genetic Hits 1.03E-07 1.56
DNA-dependent ATPase activity Genetic Hits 2.20E-06 1.52
RNA elongation Genetic Hits 8.37E-06 1.48
Hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in lineGenetic Hits 2.12E-08 1.43
Non-recombinational repair Genetic Hits 1.55E-05 1.39
Protein amino acid acylation Genetic Hits 1.01E-11 1.3
Deacetylase activity Genetic Hits 0.00548 1.3
One-carbon compound metabolic process Genetic Hits 2.45E-09 1.22
Nucleotide-excision repair Genetic Hits 0.00313 1.22
sequence-specific DNA binding Genetic Hits 8.28E-07 1.17
Establishment of organelle localization Genetic Hits 0.000183 1.17
Protein amino acid acetylation Genetic Hits 7.44E-09 1.09
Histone deacetylation Genetic Hits 0.00164 1.09
Methylation Genetic Hits 2.25E-11 1.04
structure-specific DNA binding Genetic Hits 0.00174 1.04
regulation of DNA metabolic process Genetic Hits 1.72E-05 1
Chromatin silencing at silent mating-type cassette Genetic Hits 1.73E-06 0.96
Double-strand break repair via nonhomologous end joining Genetic Hits 1.45E-05 0.96

Nature Genetics: doi:10.1038/ng.337



Recombinational repair Genetic Hits 5.32E-08 0.91
DNA strand elongation Genetic Hits 2.55E-05 0.87
Histone acetylation Genetic Hits 0.000635 0.87
Mismatch repair Genetic Hits 0.00353 0.87
Deoxyribonuclease activity Genetic Hits 2.00E-05 0.83
DNA replication initiation Genetic Hits 0.000135 0.83
Sister chromatid cohesion Genetic Hits 0.00217 0.83
Nuclear migration Genetic Hits 0.00389 0.78
negative regulation of DNA metabolic process Genetic Hits 2.18E-06 0.74
Histone methylation Genetic Hits 8.12E-08 0.7
Tubulin binding Genetic Hits 5.44E-06 0.7
DNA integrity checkpoint Genetic Hits 5.44E-06 0.7
Lagging strand elongation Genetic Hits 5.37E-05 0.65
ATP-dependent chromatin remodeling Genetic Hits 0.000452 0.65
Meiotic gene conversion Genetic Hits 0.00221 0.65
Meiotic chromosome segregation Genetic Hits 0.00221 0.65
Microtubule-based movement Genetic Hits 6.25E-06 0.61
Motor activity Genetic Hits 6.25E-06 0.61
Postreplication repair Genetic Hits 0.000125 0.61
Gene conversion at mating-type locus Genetic Hits 0.000289 0.57
single-stranded DNA binding Genetic Hits 0.00198 0.57
Double-strand break repair via single-strand annealing Genetic Hits 0.000197 0.52
regulation of DNA recombination Genetic Hits 1.34E-05 0.48
Spindle localization Genetic Hits 0.000108 0.48
regulation of DNA replication Genetic Hits 3.73E-05 0.44
negative regulation of DNA recombination Genetic Hits 0.00327 0.44
Transposition Genetic Hits 0.000104 0.39
Double-strand break repair via synthesis-dependent strand annealing Genetic Hits 0.000104 0.39
Nucleosome assembly Genetic Hits 0.00261 0.39
Microtubule motor activity Genetic Hits 0.00261 0.39
negative regulation of DNA replication Genetic Hits 0.00176 0.35
Cyclin-dependent protein kinase activity Genetic Hits 0.000797 0.31
Histone exchange Genetic Hits 0.00437 0.31
Double-strand break repair via break-induced replication Genetic Hits 0.00437 0.31

Genetic Hits 0.00221 0.26
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Supplementary Table 2A: Yeast interactome data.  
 
Interaction Type Number of interacting pairs 
Physical 33,765 
MIPS Complex 11,014 
Metabolic 2,882 
Regulatory 
interactions between 
transcription factors 

207 

Protein-DNA 
interactions 

5256  Reliable interactions a, 3664 ChIP-chip motif 
interactions b, 5143 ChIP-chip interactions c 

 
a Reliable interactions include those ChIP-chip motif interactions for which the motif 
occurrence in the gene’s upstream sequence was conserved in at least two other 
Saccharomyces sensu stricto species, as well as literature-curated interactions. 
b ChIP-chip motif interactions refer to those ChIP-chip interactions for which the gene’s 
upstream sequence contained the binding motif of the specific transcription factor.  
c ChIP-chip interactions refer to interactions discovered by the ChIP-chip method.  
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Supplementary Table 2B: Interaction weights associated with individual types of 
evidence for protein-protein interaction.  
 

Type of interaction evidence Probability1 

Two-hybrid HTP 0.061056 

Product-Substrate 0.06908 

Affinity Capture-MS HTP 0.216939 

Affinity Capture-MS LC 0.255753 

Co-purification HTP 0.279417 

Affinity Capture-Western HTP 0.312123 

Co-fractionation HTP 0.350432 

Reconstituted Complex HTP 0.403046 

Two-hybrid LC 0.464472 

Biochemical Activity LC 0.489647 

Biochemical Activity HTP 0.552508 

Protein-peptide LC 0.674045 

Affinity Capture-Western LC 0.682404 

Co-localization LC 0.700851 

Transcription Factor -> Transcription Factor 0.71149 

Protein-peptide HTP 0.756207 

Reconstituted Complex LC 0.789035 

MIPS 0.801993 

Protein-RNA LC 0.805288 

Co-purification LC 0.843226 

Co-fractionation LC 0.871346 

Co-crystal Structure HTP 0.961121 

 
1 As described in the Methods section, in our weighting scheme each interaction between 
two protein nodes pi, pj.is associated with a weight wij such that   )|1(P=

jiji ppppij IRPw =

I is a vector of indicator functions such that each function corresponds to a different type 
of interaction evidence.  To estimate the weight wk associated with interaction evidence 
type k we assumed an interaction between two proteins was supported by evidence type k 
alone.  We therefore computed wk based on a vector Ik whose k-th entry was set to 1 and 
all other entries to 0 and using the formula above.    
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Supplementary Table 3A:  Yeast genes that modify α-syn toxicity when 
overexpressed. 
 

Yeast Gene Type Strength Human 
ortholog(s) 

Proposed function 

Amino Acid Transport 
AVT4 suppressor 3 SLC36A1 

SLC36A2 
SLC36A3 
SLC36A4 

Vacuolar transporter; exports large neutral amino 
acids from the vacuole 

DIP5 suppressor 3 SLC7A1 
SLC7A14 
SLC7A2 
SLC7A3 
SLC7A4 

SLC7A13 

Dicarboxylic amino acid permease 

LST8 suppressor 3 GBL Component of the TOR signaling pathway 
Autophagy 

NVJ1 suppressor 2  Nuclear envelope protein; functions during 
piecemeal microautophagy of the nucleus (PMN) 

Cytoskeleton 
ICY1 suppressor 4  Protein that interacts with the cytoskeleton 
ICY2 suppressor 4  Protein that interacts with the cytoskeleton 

Manganese transport 
CCC1 suppressor 4  Putative vacuolar Fe2+/Mn2+ transporter 
PMR1 enhancer -7 ATP2C1 

ATP2C2 
High affinity Ca2+/Mn2+ P-type ATPase required 
for Ca2+ and Mn2+ transport into Golgi 

Protein phosphorylation 
IME2 suppressor 4 ICK Serine/threonine protein kinase involved in 

activation of meiosis 
PTP2 suppressor 3 PTPRE, 

PTPRC, 
PTPN22, 
PTPRG 

Phosphotyrosine-specific protein phosphatase 
involved in osmolarity sensing 

GIP2 suppressor 3 PPP1R3A 
PPP1R3B 
PPP1R3C 
PPP1R3D 
PPP1R3E 

Putative regulatory subunit of the protein 
phosphatase Glc7p, involved in glycogen 
metabolism 

YCK3 suppressor 3 CSNK1G1 
CSNK1G2 
CSNK1G3 

Palmitoylated, vacuolar membrane-localized 
casein kinase I isoform 

RCK1 suppressor 3 CAMK1G Protein kinase involved in the response to 
oxidative stress 

CDC5 suppressor 
(Cdc5 

overexpression 
is toxic; in 

presence of a-
syn it 

rescues/rescued) 

3 PLK2 Polo-like kinase; found at bud neck, nucleus and 
SPBs; has multiple functions in mitosis and 
cytokinesis 

PTC4 suppressor 1 PPM1G Cytoplasmic type 2C protein phosphatase 
SIT4 enhancer -2 PPP6C Type 2A-related serine-threonine phosphatase. 
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CAX4 enhancer -3 DOLPP1 Dolichyl pyrophosphate phosphatase, required for 
Dol-P-P-linked oligosaccharide intermediate 
synthesis and protein N-glycosylation. 

PPZ2 enhancer -3 PPP1CC 
PPP1CB 
PPP1CA 

Serine/threonine protein phosphatase Z 

PPZ1 enhancer -8 PPP1CA 
PPP1CB 
PPP1CC 

Serine/threonine protein phosphatase Z 

Transcription/Translation 
CUP9 suppressor 3 MEIS1 MEIS2 

MEIS3 
NR_002211.1 

PKNOX1 
PKNOX2 
Q99687-3 

TGIF1 TGIF2 
TGIF2LX 
TGIF2LY 

Transcriptional repressor involved in copper ion 
homeostasis 

HAP4 suppressor 4  Transcriptional activator and global regulator of 
respiratory gene expression 

FZF1 suppressor 3 KLF15 KLF11 
ZNF624 

Key transcriptional regulator of cellular response 
to nitrosative stress 

MGA2 suppressor 3 ANKRD1 
OSBPL1A 

ER membrane protein involved in regulation of 
OLE1 transcription 

MKS1 enhancer -5  Pleiotropic negative transcriptional regulator 
involved in Ras-CAMP and lysine biosynthetic 
pathways and nitrogen regulation; involved in 
retrograde (RTG) mitochondria-to-nucleus 
signaling 

VHR1 suppressor 3  Transcriptional activator 
JSN1 suppressor 2 PUM1 Member of the Puf family of RNA-binding 

proteins, interacts with mRNAs encoding 
membrane-associated proteins 

SUT2 enhancer -3  Putative transcription factor; multicopy suppressor 
of mutations that cause low activity of the 
cAMP/protein kinase A pathway 

TIF4632 suppressor 3 EIF4G1 
EIF4G2 
EIF4G3 

Translation initiation factor eIF4G, subunit of the 
mRNA cap-binding protein complex (eIF4F)  

STB3 suppressor 3  Protein that binds Sin3p in a two-hybrid assay.  
MATALPHA1 enhancer -5  Transcriptional co-activator involved in regulation 

of mating-type-specific gene expression 
Trehalose biosynthesis 

UGP1 suppressor 4 UGP2 UDP-glucose pyrophosphorylase, catalyses the 
formation of UDP-Glc, a precursor to trehalose 

TPS3 suppressor 3  Regulatory subunit of trehalose-6-phosphate 
synthase/phosphatase complex, which synthesizes 
trehalose 

NTH1 suppressor 2 TREH Neutral trehalase, degrades trehalose; required for 
thermotolerance and may mediate resistance to 
other cellular stresses 

Ubiquitin-related 
CDC4 suppressor 4 FBXW7 F-box, associates with Skp1p and Cdc53p to form 
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a complex, SCFCdc4, which acts as ubiquitin-
protein ligase 

UIP5 suppressor 4  Protein of unknown function that interacts with 
Ulp1p, a Ubl (ubiquitin-like protein)-specific 
protease 

HRD1 suppressor 4 AMFR 
SYVN1 

Ubiquitin-protein ligase required for endoplasmic 
reticulum-associated degradation (ERAD) of 
misfolded proteins 

UBP11 enhancer -3 USP21 Ubiquitin-specific protease that cleaves ubiquitin 
from ubiquitinated proteins. 

UBP7 enhancer -4 USP21 Ubiquitin-specific protease that cleaves ubiquitin-
protein fusions. 

Vesicular transport, ER-Golgi 
YPT1 suppressor 5 RAB10 

RAB13 
RAB1A 
RAB1C 
RAB8A 
RAB8B 

Ras-like small GTPase, involved in the ER-to-
Golgi step of the secretory pathway 

YKT6 suppressor 4 YKT6 v-SNARE involved in trafficking to and within the 
Golgi, endocytic trafficking to the vacuole, and 
vacuolar fusion 

BRE5 suppressor 4 G3BP2 Ubiquitin protease cofactor, forms 
deubiquitination complex with Ubp3p to regulate 
ER-Golgi transport 

SEC21 suppressor 4 COPG2  
COPG 

Gamma subunit of coatomer, a heptameric protein 
complex that together with Arf1p forms the COPI 
coat 

UBP3 suppressor 3 USP10 Ubiquitin-specific protease that interacts with 
Bre5p to co-regulate anterograde and retrograde 
transport between ER and Golgi 

ERV29 suppressor 3 SURF4 Protein localized to COPII-coated vesicles, 
involved in vesicle formation and incorporation of 
specific secretory cargo.  

SEC28 suppressor 3 COPE Epsilon-COP subunit of the coatomer; regulates 
retrograde Golgi-to-ER protein traffic; stabilizes 
Cop1p 

SFT1 suppressor 2 mouse BET1 Intra-Golgi v-SNARE, required for transport of 
proteins between an early and a later Golgi 
compartment. 

GLO3 enhancer -1 ARFGAP3 
ZNF289 

ADP-ribosylation factor GTPase activating protein 
(ARF GAP), involved in ER-Golgi transport 

TRS120 enhancer -2 NIBP One of 10 subunits of the transport protein particle 
(TRAPP) complex of the cis-Golgi which mediates 
vesicle docking and fusion 

GYP8 enhancer -2 TBC1D20 GTPase-activating protein for yeast Rab family 
members; Ypt1p is the preferred in vitro substrate 

YIP3 enhancer -2 RABAC1 Protein localized to COPII vesicles, proposed to be 
involved in ER to Golgi transport; interacts with 
Rab GTPases 

BET4 enhancer -3 RABGGTA Alpha subunit of Type II 
geranylgeranyltransferase; provides a membrane 
attachment moiety to Rab-like proteins Ypt1p and 
Sec4p 

SLY41 enhancer -5 SLC35E1 Protein involved in ER-to-Golgi transport.  

Nature Genetics: doi:10.1038/ng.337



GOS1 enhancer -2 GOSR1 v-SNARE protein involved in Golgi transport, 
homolog of the mammalian protein GOS-28/GS28 

SEC31 enhancer -2 SEC31A 
SEC31B 

Essential phosphoprotein component (p150) of the 
COPII coat of secretory pathway vesicles, in 
complex with Sec13p; required for ER-derived 
transport vesicle formation  

Other cellular processes 
PFS1 suppressor 4  Sporulation protein required for prospore 

membrane formation at selected spindle poles 
PDE2 suppressor 4 PDE10A 

PDE11A 
PDE1A 
PDE1B 
PDE1C 
PDE2A 
PDE3A 
PDE3B 
PDE4A 
PDE4B 
PDE4C 
PDE4D 
PDE5A 
PDE6A 
PDE6B 
PDE6C 
PDE7A 
PDE7B 
PDE8A 
PDE8B 
PDE9A 

High-affinity cyclic AMP phosphodiesterase, 
component of the cAMP-dependent protein kinase 
signaling system 

MUM2 suppressor 4  Interacts with Orc2p, which is a component of the 
origin recognition complex.  

OSH3 suppressor 3 OSBPL1A 
OSBPL2 
OSBPL3 
OSBPL6 
OSBPL7 

Member of an oxysterol-binding protein family, 
functions in sterol metabolism  

PHO80 suppressor 3  Cyclin, negatively regulates phosphate metabolism 
OSH2 suppressor 3 OSBPL3 

OSBP OSBP2 
Member of an oxysterol-binding protein family, 
functions in sterol metabolism  

ISN1 suppressor 2  Inosine 5'-monophosphate (IMP)-specific 5'-
nucleotidase 

EPS1 enhancer -1  Protein disulfide isomerase-related protein 
involved in endoplasmic reticulum retention of 
resident ER proteins.  

IDS2 enhancer -2  Protein involved in modulation of Ime2p activity 
during meiosis 

QDR3 suppressor 4  Multidrug transporter of the major facilitator 
superfamily, required for resistance to quinidine, 
barban, cisplatin, and bleomycin 

TPO4 enhancer -3  Polyamine transport protein, recognizes spermine, 
putrescine, and spermidine; localizes to the plasma 
membrane; member of the major facilitator 
superfamily  

IZH3 enhancer -2  Membrane protein involved in zinc metabolism, 
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member of the four-protein IZH family, expression 
induced by zinc deficiency; deletion reduces 
sensitivity to elevated zinc and shortens lag phase, 
overexpression reduces Zap1p activity 

Unknown Function 
YKL063C suppressor 4  Uncharacterized, GFP-fusion localizes to the Golgi 
YML081W suppressor 4 EGR3 Uncharacterized, GFP-fusion localizes to the 

nucleus 
YNR014W suppressor 4  Uncharacterized, expression is cell-cycle regulated 

and heat-inducible  
YKL088W suppressor 4 PPCDC Protein required for cell viability. Predicted 

phosphopantothenoylcysteine decarboxylase 
YML083C suppressor 3  Uncharacterized, strong increase in transcript 

abundance during anaerobic growth compared to 
aerobic growth 

YDR374C suppressor 3 YTHDF1 
YTHDF2 
YTHDF3 

Uncharacterized 

YOR291W 
(YPK9) 

suppressor 3 ATP13A2 
(PARK9) 
ATP13A3 
ATP13A4 
ATP13A5 

Probable cation-transporting ATPase 2 

YDL121C suppressor 2  Uncharacterized, GFP-fusion localizes to the ER 
YBR030W suppressor 2  Uncharacterized, predicted to function in 

phospholipid metabolism 
YMR111C suppressor 2  Uncharacterized, GFP-fusion localizes to the 

nucleus 
YOR129C suppressor 2  Putative component of the outer plaque of the 

spindle pole body; may be involved in cation 
homeostasis or multidrug resistance.  
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Supplemenatry Table 3B: GO annotations for the α-synuclein genetic hits (proteins that 
modify α-syn toxicity when overexpressed) and genes that are differentially regulated 
following α-syn expression. Note that this table reports the GO annotations for all the  
differentially expressed genes, combining the up and down regulated genes.  The numbers in the  
main text differ because they refer to the GO annotations computed separately for the up- and 
down-regulated genes.

Ontology Data type GO_term P-value
process Genetic Hits ER to Golgi vesicle-mediated transport 6.30E-05
process Genetic Hits Golgi vesicle transport 6.69E-05
process Genetic Hits vesicle-mediated transport 0.00012
process Genetic Hits localization 0.00237
process Genetic Hits membrane budding 0.00291
process Genetic Hits transport 0.01562
process Genetic Hits establishment of localization 0.02061
process Genetic Hits Golgi vesicle budding 0.02821
process Genetic Hits trehalose metabolic process 0.03361
function Genetic Hits phosphoric ester hydrolase activity 0.00083
function Genetic Hits phosphatase activity 0.00276
function Genetic Hits phosphoprotein phosphatase activity 0.00847
function Genetic Hits protein serine/threonine phosphatase activity 0.01067
function Genetic Hits transcription activator activity 0.0467
component Genetic Hits Golgi apparatus 6.79E-06
component Genetic Hits Golgi membrane 1.34E-05
component Genetic Hits Golgi apparatus part 2.42E-05
component Genetic Hits endomembrane system 0.00034
component Genetic Hits membrane 0.00347
component Genetic Hits COPI vesicle coat 0.0049
component Genetic Hits COPI coated vesicle membrane 0.0049
component Genetic Hits Golgi-associated vesicle 0.00623
component Genetic Hits Golgi-associated vesicle membrane 0.01003
component Genetic Hits organelle membrane 0.01656
component Genetic Hits coated vesicle 0.01771
component Genetic Hits vesicle coat 0.03038
component Genetic Hits vesicle membrane 0.03825
component Genetic Hits cytoplasmic vesicle membrane 0.03825
component Genetic Hits coated vesicle membrane 0.03825
component Genetic Hits membrane coat 0.04747
component Genetic Hits coated membrane 0.04747
process Differentially Expressed mitochondrial translation 5.19E-10
process Differentially Expressed mitochondrion organization 8.47E-08
process Differentially Expressed generation of precursor metabolites and energy 2.36E-05
process Differentially Expressed aerobic respiration 3.09E-05
process Differentially Expressed cellular respiration 0.00017
process Differentially Expressed acetyl-CoA catabolic process 0.00046
process Differentially Expressed tricarboxylic acid cycle 0.00046
process Differentially Expressed oxidative phosphorylation 0.0015
process Differentially Expressed sulfate assimilation 0.00202
process Differentially Expressed sulfur utilization 0.00202
process Differentially Expressed acetyl-CoA metabolic process 0.00627
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process Differentially Expressed coenzyme catabolic process 0.00627
process Differentially Expressed energy derivation by oxidation of organic compounds 0.0066
process Differentially Expressed cofactor catabolic process 0.01056
process Differentially Expressed glutamate metabolic process 0.02155
process Differentially Expressed electron transport chain 0.02745
process Differentially Expressed respiratory electron transport chain 0.02745
process Differentially Expressed ATP synthesis coupled electron transport 0.02745
process Differentially Expressed mitochondrial ATP synthesis coupled electron transport 0.02745
process Differentially Expressed oxidation reduction 0.02745
process Differentially Expressed transposition 0.04596
process Differentially Expressed transposition, RNA-mediated 0.04596
function Differentially Expressed structural constituent of ribosome 1.61E-11
function Differentially Expressed oxidoreductase activity 9.26E-10
function Differentially Expressed structural molecule activity 2.49E-08
function Differentially Expressed structural constituent of cell wall 0.00055
function Differentially Expressed oxidoreductase activity, acting on sulfur group of donors 0.00135
function Differentially Expressed copper ion binding 0.00409
component Differentially Expressed organellar ribosome 3.90E-12
component Differentially Expressed mitochondrial ribosome 3.90E-12
component Differentially Expressed mitochondrial part 5.12E-11
component Differentially Expressed mitochondrial lumen 2.14E-10
component Differentially Expressed mitochondrial matrix 2.14E-10
component Differentially Expressed ribosomal subunit 4.16E-10
component Differentially Expressed organellar large ribosomal subunit 1.16E-08
component Differentially Expressed mitochondrial large ribosomal subunit 1.16E-08
component Differentially Expressed cytoplasm 2.32E-08
component Differentially Expressed ribosome 5.60E-08
component Differentially Expressed fungal-type cell wall 1.19E-07
component Differentially Expressed external encapsulating structure 3.61E-07
component Differentially Expressed cell wall 3.61E-07
component Differentially Expressed mitochondrion 4.25E-06
component Differentially Expressed retrotransposon nucleocapsid 5.87E-06
component Differentially Expressed large ribosomal subunit 2.69E-05
component Differentially Expressed small ribosomal subunit 0.00084
component Differentially Expressed mitochondrial inner membrane 0.00085
component Differentially Expressed organelle inner membrane 0.00234
component Differentially Expressed mitochondrial respiratory chain 0.00472
component Differentially Expressed mitochondrial membrane part 0.01315
component Differentially Expressed cell 0.01866
component Differentially Expressed cell part 0.02746
component Differentially Expressed vacuole 0.03438
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Supplementary Table 3C: List of the differentially expressed genes identified four hours 
after induction of α-syn expression. Each Gene ID is associated with the corresponding 
log2(fold change) and p-value.

Gene ID log2 P-value Gene ID log2 P-value
(fold change) (fold change)

YJR122W -1.0658 0.000128 YLL025W 1.3055 7.80E-05
YBR284W 1.0594 0.004615 YPL106C 1.0247 0.000622
YGL248W 2.5262 0.000114 YOR136W -1.4178 0.000735
YMR184W 1.9749 5.40E-05 YHR136C 2.4966 0.000176
YGR176W 1.1381 9.20E-05 YDL085C-A 1.5025 0.000123
YLR303W 1.3598 0.000208 YLR150W -1.8644 0.000105
YNL208W 2.3106 4.40E-05 YOR343W-B 2.7193 5.70E-05
YJL012C-A 1.0713 0.000407 YNL217W 1.0037 0.000429
YGL236C -1.1053 0.000235 YBR251W -1.3228 7.30E-05
YNL052W -1.0725 0.000172 YNL069C -1.4775 0.000625
YMR103C 1.0737 0.000125 YHR005C-A -1.0055 0.000517
YLL039C 2.0309 8.50E-05 YNL184C -1.048 0.000132
YGR161W-A 2.5931 7.00E-05 YGR037C 1.476 0.000176
YBR045C 1.7823 0.000125 YLR155C 1.7544 0.000359
YML009C -1.4996 6.70E-05 YGL045W 1.4284 0.000927
YDR493W -1.1733 8.50E-05 YPR047W -1.09 0.00031
YMR169C 1.8537 6.70E-05 YOR264W -1.1447 0.00019
YJL104W -1.1388 0.000276 YBL093C 1.579 0.000531
YOL120C -1.0333 0.008252 YGR189C 1.2646 0.000111
YDR034W-B 4.1468 9.90E-05 YPR158W 1.222 0.000164
YIL098C -1.2989 8.30E-05 YDL010W 1.4647 0.000164
YDL012C 1.0461 0.00055 YDR511W -1.0789 0.000102
YPL018W 1.1805 0.000123 YKL104C 2.1744 7.80E-05
YOR356W -1.3903 7.20E-05 YDR342C -1.8411 0.000698
YPL201C -1.3949 0.000169 YNR058W 1.0048 0.000449
YAL034C 1.4535 0.000158 YDR298C -1.23 0.000129
YDL223C 1.7347 5.40E-05 YGR137W 1.0719 0.000128
YBL101W-B 1.5501 0.000114 YDR055W 3.0985 9.50E-05
YDR354W -1.8055 9.80E-05 YDL079C -1.0582 0.000393
YGL157W 1.2631 0.000845 YNL196C 1.1497 9.50E-05
YDR178W -1.1354 0.000148 YLL009C -1.8681 5.40E-05
YCR021C 2.068 5.10E-05 YMR322C 1.4075 7.80E-05
YLL064C 1.3754 7.80E-05 YPR198W 1.0495 0.000164
YPL089C 1.0355 0.000159 YGL156W 2.4129 5.40E-05
YGR294W 1.3916 6.80E-05 YLR410W-B 1.4493 7.80E-05
YDR518W 1.1264 0.000224 YGR201C 1.8891 0.000124
YKR091W 1.952 5.40E-05 YIL070C -1.7167 5.40E-05
YPR077C 1.2699 6.00E-04 YJR161C 1.2448 7.80E-05
YDR262W 1.1009 0.000418 YHR024C -1.0058 0.00015
YIR028W 1.5881 0.000131 YCR003W -1.334 7.50E-05
YDR133C -1.6056 0.000414 YDL227C -1.9854 0.000398
YMR245W -1.187 0.000468 YGR284C 1.4113 0.000486
YGL255W 2.1607 0.000174 YOR306C 2.1626 0.000268
YBL092W -1.5886 0.000173 YMR175W 2.1435 8.00E-05
YOR288C 1.264 0.000339 YBR137W 1.1931 0.00024
YDR261W-A 2.5098 7.10E-05 YDR001C 1.6301 7.80E-05
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YNL012W 1.0101 0.000678 YML081C-A -1.2538 0.000258
YGL006W 1.0596 0.000243 YER138W-A 1.3492 0.000131
YKL174C 1.0594 0.000201 YPL170W 1.0755 4.00E-04
YKL142W 1.0318 0.000379 YGL046W 1.003 0.000172
YKL107W 1.151 0.000176 YLR438W 1.028 0.000588
YMR157C -1.1665 0.000333 YBL078C 2.3451 0.000235
YML128C 2.675 4.40E-05 YJR107W 1.5751 0.000123
YBR287W 1.1058 0.000234 YER045C 1.1873 0.000302
YLR461W 1.4776 6.70E-05 YKR080W 1.6 0.002931
YGL101W -1.0886 0.000114 YFL002W-B 2.7463 4.40E-05
YDR393W -1.0087 0.00019 YBL045C -1.0972 0.000302
YIL093C -1.0605 0.000114 YEL058W 1.0926 0.000418
YIL009W -1.3763 6.40E-05 YJL155C 1.0719 0.00069
YHR030C 1.7177 0.000124 YDL244W 3.0749 5.50E-05
YBR072W 5.0806 4.40E-05 YGL162W -1.5072 0.000812
YLR107W 1.6543 7.20E-05 YML028W 1.8694 8.30E-05
YMR187C 1.3805 0.000235 YIR021W -1.1546 0.000294
YDR367W -1.1585 0.000309 YML120C -1.0739 0.000467
YMR122W-A 1.5004 5.40E-05 YPL143W -1.5393 0.000267
YKR042W 1.1266 0.000157 YMR118C 2.1354 4.40E-05
YOR348C -1.6692 0.001265 YBR117C 2.3854 6.70E-05
YDR347W -2.0823 4.40E-05 YOL151W 2.21 7.20E-05
YJL034W 3.4918 4.40E-05 YKL065C 1.2737 0.000114
YDR494W -1.1476 0.000139 YGR213C 1.4149 7.30E-05
YOR286W -1.1778 0.000111 YBL049W 1.3442 0.000249
YOR036W 1.5971 0.000295 YGR082W -1.2733 0.000198
YBL048W 1.4263 0.000246 YBR295W 1.5997 9.50E-05
YGR032W 2.9502 4.40E-05 YJL136C -1.033 0.000863
YPR079W 1.5435 0.000128 YMR008C 1.7209 0.000281
YIL117C 1.424 8.50E-05 YOL164W 1.5895 0.000173
YML054C -1.2275 0.000176 YIL023C 1.6242 5.40E-05
YBL075C 1.771 0.000125 YOR315W -1.2035 0.002376
YMR174C 1.3348 0.000235 YPR002W -1.763 0.00021
YKR006C -1.4399 6.70E-05 YMR095C 1.8178 0.000176
YGR161C 3.7462 8.60E-05 YFR011C -1.2138 0.000403
YAL061W 1.6676 5.50E-05 YNR001C -1.0796 0.000335
YLR092W 1.7457 0.000358 YLR295C -1.539 0.000114
YOR176W 1.4435 0.000114 YMR180C 2.0771 7.80E-05
YKL086W 1.1105 0.000134 YOL016C 1.2236 0.001568
YMR081C -1.2859 0.001584 YPL110C 1.2148 0.000102
YBR233W-A 2.8382 0.000114 YIL158W -1.7344 0.00032
YGR161W-B 1.2832 0.000137 YDL125C 1.8355 0.000329
YML123C 4.6838 5.10E-05 YEL025C -1.1627 9.50E-05
YJL223C 1.5057 0.000114 YOL077W-A -1.1352 0.001012
YKL148C -1.0311 0.001157 YPL081W -1.1939 0.001187
YDL159W-A 2.7848 0.000338 YBR201W 1.5794 0.000408
YIR041W 1.2418 0.000174 YDR098C-A 1.206 0.000913
YLR061W -1.3411 0.000719 YLL057C 1.548 0.000344
YMR020W 1.2445 0.000405 YOL031C 2.38 8.10E-05
YER146W -1.0348 0.000128 YDL024C 1.1257 0.000563
YMR012W -1.2601 0.000339 YDR351W -1.6819 5.40E-05
YCR045C 1.0334 0.000329 YGR138C 2.5612 4.40E-05
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YIL074C 1.2064 0.000552 YLR158C 1.4237 0.000414
YER130C 1.1719 0.000393 YMR291W 1.6313 0.000148
YPL088W 2.3649 7.80E-05 YMR120C 2.6337 0.000157
YNL332W 3.222 7.80E-05 YHL046C 1.6623 0.000693
YMR305C 1.0439 0.000416 YPR156C 1.7516 7.10E-05
YNL277W 1.0835 0.001327 YBR021W -1.9111 9.80E-05
YJL196C -1.0969 0.00047 YLR044C 2.0358 7.80E-05
YLR054C 2.5078 4.40E-05 YEL024W -1.3701 0.000503
YGR008C 2.4242 0.000119 YPL173W -1.0171 0.000128
YCR104W 1.3943 7.40E-05 YBR169C 2.2267 0.000125
YOR192C-B 1.1038 0.000179 YBR071W 1.4768 0.00012
YMR315W 1.149 0.000774 YBR185C -1.2658 0.000114
YMR316W 2.0073 0.000794 YOR234C -1.0345 0.001216
YLR149C 1.0413 0.000287 YGL053W 1.1944 0.000247
YDR384C -1.0856 0.001517 YOR173W 1.5126 8.00E-05
YDR391C 1.4628 0.000179 YLR287C-A -1.178 0.000507
YFL031W 1.7173 7.80E-05 YEL071W 1.0289 0.000437
YLR058C 1.7323 0.00087 YIL108W 1.9418 7.10E-05
YPL163C 1.0192 0.006448 YHR209W 2.477 5.40E-05
YHR096C 2.8653 4.90E-05 YLR189C -1.243 0.00055
YJL056C 1.273 0.000147 YBL003C -1.0199 0.000939
YKR049C 1.4212 0.000202 YJR137C 1.0944 0.001341
YNR034W-A 1.2003 0.000176 YPL017C 1.5303 0.000319
YBR296C 1.6555 0.001311 YPL171C 1.2394 0.000407
YGR142W 2.6615 0.000175 YDL114W 1.1076 0.00058
YGL107C -1.0175 0.000164 YDR371W -1.2351 0.000504
YKL137W -1.1248 0.000147 YKR011C 1.0391 0.002752
YHR038W -1.0674 0.000131 YBR120C -1.2714 7.30E-05
YOR391C 1.1541 9.80E-05 YHR007C 1.4529 0.000541
YGR027W-A 1.0387 0.00347 YDL222C 1.1619 9.80E-05
YMR090W 2.2017 8.50E-05 YGL184C 2.1507 0.000246
YJL153C 2.0296 0.000318 YJL043W 2.6431 5.70E-05
YDR149C -1.12 0.000403 YBR054W 2.0234 0.000534
YOR065W -1.3416 0.000641 YGL234W 1.0927 0.000104
YLR292C 1.16 0.000169 YMR242C -1.1779 0.00071
YOL064C 1.1554 0.000982 YGL146C -1.1732 0.000414
YJL144W 3.4868 6.80E-05 YGR243W -1.6619 0.000224
YGL034C -1.2777 0.000375 YDR059C 1.2306 0.000185
YOL055C 2.1735 6.80E-05 YDR026C 1.0174 0.000124
YOR343C-B 1.0196 4.00E-04 YGR076C -1.5248 7.80E-05
YCR009C 1.0252 0.000528 YHR128W -1.3429 0.001976
YML078W -1.0425 0.000577 YLL026W 1.2779 0.000327
YJL038C 2.9795 8.30E-05 YBL030C -1.8529 0.000114
YGR258C 1.0022 0.00047 YCONTRO-L 1.1557 0.000304
YDL057W 1.4384 0.000246 YOL161C 1.3519 8.40E-05
YNL044W 1.2732 0.00021 YFL020C 1.1495 9.50E-05
YBL087C -1.0582 0.00158 YFR026C 5.2337 4.40E-05
YCL044C 1.0366 0.002618 YBL107W-A 1.1686 0.000391
YDR481C 1.3479 0.000306 YOR096W -1.0621 0.00032
YJL116C 1.3556 0.000506 YLR350W 1.2553 0.00058
YML087C -1.7512 4.40E-05 YGL159W -1.1562 0.000516
YCL024W -1.0499 0.001208 YKR097W -1.2272 0.00517
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YML116W-A 1.0636 0.000222 YCL030C 1.1372 0.001202
YFL014W 4.2413 4.40E-05 YGR256W 3.1586 4.40E-05
YNR076W 1.5881 6.50E-05 YGR084C -1.2985 7.80E-05
YDR350C -1.7765 5.40E-05 YDR343C -2.2602 0.000198
YKL217W -1.8432 6.00E-04 YGL068W -1.3021 0.000164
YOR341W -1.1933 0.031226 YMR230W -1.3445 0.000426
YKR075C -1.6418 9.50E-05 YMR238W 1.4865 6.70E-05
YDR519W 1.4993 9.80E-05 YHR138C 2.2966 0.000148
YNL054W-B 1.6023 0.000468 YHR143W -1.369 0.001277
YBR222C 1.0323 0.000229 YGL188C -1.1437 0.000267
YKL109W -1.1518 0.000229 YDR077W 2.2193 6.30E-05
YPL097W -1.158 0.000191 YJL181W -1.0593 0.000714
YGL028C -1.3241 0.003464 YBR214W 2.0366 0.000114
YBR158W -1.1815 0.000192 YLR390W-A 1.024 0.000243
YKL163W 4.5466 4.40E-05 YIL109C 1.1721 9.20E-05
YDR210W-A 2.7187 5.40E-05 YLR286C -1.5682 0.001389
YPL262W -1.1283 0.001001 YMR039C 1.24 0.000891
YGL189C -1.3005 0.000587 YOL119C 1.2955 0.000209
YKL073W 1.3726 0.000112 YDR462W -1.3977 7.80E-05
YDR365W-B 1.0701 0.000155 YIL040W 1.2976 0.001061
YCR100C 1.0992 0.000229 YOL019W 1.3103 0.000164
YGR268C 1.2322 9.80E-05 YMR251W-A 1.3748 0.000685
YMR303C -1.1125 0.011794 YPR035W 1.0602 0.001493
YDL124W 2.9288 5.80E-05 YDL020C 1.8543 0.000418
YML132W 1.2763 0.000164 YLR125W 1.5383 6.20E-05
YBR048W -1.3159 0.000298 YDR034CC 2.3602 6.20E-05
YLR038C -1.1447 0.00062 YNL284C -1.0366 0.000124
YPL019C 1.5419 0.000179 YCL043C 1.8917 5.40E-05
YGR067C -1.6504 0.000393 YOR289W 1.0905 0.000185
YMR173W-A 2.3477 5.10E-05 YML091C -2.0683 0.000261
YER103W 2.1592 0.000119 YNR009W -1.1875 0.000318
YGR087C 1.569 0.000715 YBR076W 3.0589 5.40E-05
YLR312W-A -1.4715 7.10E-05 YLR178C 2.0123 7.20E-05
YJL180C -1.0238 0.000129 YHR174W 1.0114 0.000418
YIL176C 1.4294 0.000114 YPL247C 1.2919 0.000266
YDR542W 1.5655 9.20E-05 YDR155C 2.0472 0.000112
YAR015W 1.2878 0.000376 YOR220W 1.0945 0.001353
YGR088W 1.4151 0.00058 YKL164C 1.2635 0.000114
YMR105C 1.1571 0.000198 YMR295C 1.7123 7.00E-05
YKL001C 1.7033 0.000164 YLR410W-A 2.3634 0.000403
YNL252C -1.1839 9.80E-05 YDL202W -1.0127 0.000292
YDR375C -1.1446 9.90E-05 YGR165W -1.0617 0.000176
YER020W 1.2818 0.00021 YFR012W-A 1.5874 0.000298
YFL062W 1.3402 0.000174 YNR067C -1.2236 0.002731
YPL014W 1.3944 0.000581 YKL165C 2.3336 5.10E-05
YHR100C 2.5388 4.40E-05 YKR039W 1.0592 0.004605
YGR146C 1.2887 0.000128 YKL224C 1.333 7.80E-05
YPL221W 1.2821 0.000128 YLR225C 1.3936 0.000114
YLR142W 2.1985 0.000416 YJL073W 1.2345 0.000152
YPL158C -1.0138 0.000808 YHR001W-A -1.0343 0.000184
YLR126C 1.4567 6.80E-05 YBR268W -1.1348 0.000194
YNL241C 1.071 0.000176 YJR028W 1.39 0.000216

Nature Genetics: doi:10.1038/ng.337



YJL017W 1.2919 0.000131 YDR453C 1.4105 7.40E-05
YIL052C -1.225 0.000363 YHR053C 1.4095 0.016953
YOR343W-A 2.6344 8.00E-05 YML088W 1.1818 0.000416
YKR057W -1.2229 0.000583 YLR121C 2.9515 4.40E-05
YBR182C 1.5046 0.000108 YBL101W-A 1.6858 6.70E-05
YBR029C -1.2195 0.000298 YPL187W -1.7772 0.000114
YDR171W 2.6268 0.000258 YLR423C 1.9177 5.40E-05
YGL040C -1.0275 0.000229 YHR104W 1.1853 0.00022
YNL327W -1.2265 0.001576 YOR192C-A 2.2182 5.40E-05
YNR075W 1.2616 8.00E-05 YGR038C-A 2.0868 5.40E-05
YCR083W 1.0387 0.000562 YBR037C -1.1632 0.000258
YIL157C -1.021 0.000191 YPR167C 1.4366 0.000416
YAL068C 1.5709 7.80E-05 YIL101C 1.6418 0.00022
YHR087W 2.8666 0.000114 YDL234C 1.755 0.000144
YDR365C -1.4443 8.40E-05 YDR411C 1.4934 8.00E-05
YBR294W 3.5866 0.000191 YDR007W 1.1237 0.004387
YOR035C 1.179 0.000104 YGL089C -1.5561 8.40E-05
YMR032W -1.0713 0.000148 YJL052W 1.4638 6.20E-05
YDR210W 1.3388 0.000484 YPL052W 1.0701 0.000298
YMR003W -1.012 0.000268 YJL191W -1.2794 0.000114
YDR210CC 1.7628 0.000128 YER037W 2.9154 4.40E-05
YKL006W -1.0586 0.000297 YDL248W 1.6699 8.40E-05
YGR043C 1.9962 4.40E-05 YLR414C 2.1371 6.70E-05
YPL134C -1.161 0.000114 YOL052C-A 2.8185 9.20E-05
YDR043C 1.1709 0.001204 YLR124W 1.2016 0.000462
YDL070W 1.1741 9.70E-05 YCL038C 1.2533 0.001826
YPL280W 1.357 7.50E-05 YOR153W 1.5703 7.70E-05
YDR345C -1.509 0.000174 YGR214W -1.2568 0.002172
YHR179W 1.9113 5.40E-05 YMR286W -1.0582 0.000326
YCL019W 1.3531 8.30E-05 YJL016W 1.3855 6.40E-05
YBR299W -1.3182 0.000164 YBL101C 1.4721 9.50E-05
YGR060W 1.0813 0.00018 YIL072W 1.146 0.000797
YOR299W 1.0552 0.000339 YEL040W -1.2185 0.000967
YMR320W 1.4491 0.000457 YHR097C 1.3307 0.000248
YMR096W 2.4916 0.000185 YFR022W 1.2008 0.000222
YDR025W -1.1479 0.002196 YBL043W -1.0722 0.000164
YPL132W -1.2149 9.90E-05 YKR085C -1.2233 0.000283
YAR010C 1.5724 0.000297 YNL066W -1.4982 0.000164
YLR430W 1.07 0.000323 YOR134W 1.5892 0.000153
YMR271C 1.2167 0.000326 YNL100W -1.1392 0.000293
YIL162W -1.3379 0.000191 YDR070C 2.5841 0.000105
YDR346C -1.0654 0.00015 YFR030W 1.4659 0.000513
YMR107W 2.9857 5.40E-05 YNL315C -1.1003 0.000172
YAL053W 1.5287 9.50E-05 YPR020W -1.2197 0.000131
YMR191W 1.3961 0.00027 YEL049W 1.0734 0.000114
YJR156C 3.1044 9.80E-05 YKL194C -1.0063 0.000128
YNL142W 1.5452 0.000123 YOR024W -1.3063 8.90E-05
YMR250W 1.4894 6.70E-05 YJR048W -2.3465 5.40E-05
YDR210W-D 1.6705 0.000997 YOR298C-A 1.0913 0.002403
YPL154C 1.0404 0.000122 YGL126W 2.5723 5.40E-05
YNL134C 1.499 0.000143 YCR034W -1.0433 0.001507
YFR033C -1.3405 0.000256 YNL093W 1.1481 0.001005
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YGL261C 1.4973 9.50E-05 YKL151C 1.7548 0.00025
YPR154W 1.9199 7.70E-05 YHR112C 1.3081 0.000664
YOR099W 1.2365 0.000326 YCR007C 1.8227 0.00029
YDL072C 1.3039 0.00046 YIL148W -1.0963 0.001215
YPL172C -1.1559 0.000157 YPR166C -1.0135 0.000125
YDR322W -1.2381 8.50E-05 YLR231C 1.1253 0.000124
YCL040W 1.0985 0.000268 YML130C 2.6871 7.80E-05
YJL108C 1.1142 0.000129 YFL058W 3.0032 5.40E-05
YHR014W -1.2856 0.000289 YJR106W 1.714 6.70E-05
YIL154C 1.289 0.000316 YIR035C 1.3503 7.50E-05
YLR264W -1.2391 0.000899 YJL159W 1.3505 8.50E-05
YJR101W -1.404 0.000431 YMR104C 1.1622 0.000112
YBR033W -1.0849 0.000774 YLR136C 2.3979 9.20E-05
YPR001W 1.0419 0.000278 YLR194C 3.4375 4.40E-05
YKL170W -1.0217 0.00024 YGR209C 1.3626 6.00E-04
YOR343C-A 2.8505 4.40E-05 YEL060C 2.8107 4.40E-05
YCL047C 1.0938 0.000148 YMR173W 2.7959 4.40E-05
YOR128C 1.3609 0.000986 YDR116C -1.2933 8.50E-05
YJR078W 3.1325 8.20E-05 YLR069C -1.151 0.00087
YNL157W 1.0773 0.000233 YML052W -1.5533 0.000153
YDR277C -1.1012 0.000757 YLR304C -1.9623 0.000531
YLL041C -1.2645 0.000237 YMR040W 3.5143 8.00E-05
YKL138C -1.0383 0.000301 YJR079W 1.783 8.40E-05
YJL059W 1.0963 0.000975 YOL045W 1.0688 0.001432
YNL036W 3.0857 0.000229 YBR302C 1.4404 0.000172
YNL192W 1.8865 9.00E-05 YGR292W -1.195 0.000187
YLR168C -1.5504 5.40E-05 YNL040W 1.1889 0.000356
YGL179C 2.1724 6.20E-05 YNL144C -1.0147 0.002802
YJR135W-A -1.0308 0.000315 YCR098C 2.7102 0.000104
YNL185C -1.191 0.000152 YPL223C 3.1095 4.40E-05
YDL083C -1.1748 0.000685 YDR210W-B 2.2518 0.000114
YER072W 1.0348 0.000419 YJL138C -1.0752 0.000509
YNL322C 1.1159 0.000783 YNL336W 1.7849 7.00E-05
YLR109W 1.7113 0.000191 YMR267W -1.3515 0.000164
YNL037C -1.3888 0.000167 YGL121C 2.1901 0.000287
YKR093W -1.1313 0.000737 YNL160W 1.8915 0.000287
YER150W 2.3668 5.40E-05 YOR158W -1.227 7.80E-05
YDR034C-D 1.6024 0.000243 YJR010W 2.0045 0.000343
YJR094W-A -1.0721 0.000741 YPL282C 1.196 0.000114
YGR234W -1.2913 0.00027 YJR096W 1.8583 0.000187
YPL283C 1.036 0.000449 YLR120C 2.7988 5.40E-05
YOR187W -1.4379 0.000185 YJL171C 1.8037 0.000135
YIR017C 1.399 0.000439 YPR127W 1.6343 5.40E-05
YGR204W 1.3337 0.000144 YCL020W 2.3056 8.80E-05
YNR036C -1.0445 0.000309 YIR044C 1.2368 8.30E-05
YOR232W -1.3936 0.000202 YML025C -1.2032 7.80E-05
YJR095W -1.3732 0.001327 YHL036W 1.0733 0.00074
YMR051C 1.3587 0.000298 YLR099C 2.1698 6.10E-05
YHR055C 2.1425 0.001314 YOL056W 1.0478 0.000268
YLR214W 1.0731 0.000141 YHR057C 1.2352 0.007468
YJL096W -1.1857 0.000112 YPR119W -1.23 0.000693
YDR533C 1.4607 0.00019 YJL107C 1.0893 0.000185

Nature Genetics: doi:10.1038/ng.337



References 
1. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. 

Cell 102, 109-26 (2000). 
2. Dudley, A.M., Janse, D.M., Tanay, A., Shamir, R. & Church, G.M. A global view 

of pleiotropy and phenotypically derived gene function in yeast. Mol Syst Biol 1, 
2005 0001 (2005). 

3. Workman, C.T. et al. A systems approach to mapping DNA damage response 
pathways. Science 312, 1054-9 (2006). 

4. Begley, T.J., Rosenbach, A.S., Ideker, T. & Samson, L.D. Hot spots for 
modulating toxicity identified by genomic phenotyping and localization mapping. 
Mol Cell 16, 117-25 (2004). 

5. Parsons, A.B. et al. Integration of chemical-genetic and genetic interaction data 
links bioactive compounds to cellular target pathways. Nat Biotechnol 22, 62-9 
(2004). 

6. Koerkamp, M.G. et al. Dissection of transient oxidative stress response in 
Saccharomyces cerevisiae by using DNA microarrays. Mol Biol Cell 13, 2783-94 
(2002). 

7. Smith, J.J. et al. Expression and functional profiling reveal distinct gene classes 
involved in fatty acid metabolism. Mol Syst Biol 2, 2006 0009 (2006). 

8. Haugen, A.C. et al. Integrating phenotypic and expression profiles to map arsenic-
response networks. Genome Biol 5, R95 (2004). 

9. Tong, A.H. et al. Systematic genetic analysis with ordered arrays of yeast deletion 
mutants. Science 294, 2364-8 (2001). 

10. Tong, A.H. et al. Global mapping of the yeast genetic interaction network. 
Science 303, 808-13 (2004). 

11. SGD project. "Saccharomyces Genome Database".  
 
 
 
 
 
 
 
 

Nature Genetics: doi:10.1038/ng.337



0
5

10
15

20
25

O
rg

an
ic

 a
ci

d 
m

et
ab

ol
ic

 p
ro

ce
ss

O
xi

do
re

du
ct

as
e 

ac
tiv

ity
C

el
l c

om
m

un
ic

at
io

n
B

io
po

ly
m

er
 c

at
ab

ol
ic

 p
ro

ce
ss

S
ec

re
tio

n
D

N
A

 re
pa

ir
D

N
A

 b
in

di
ng

N
eg

at
iv

e 
re

gu
la

tio
n 

of
 c

el
lu

la
r

R
eg

ul
at

io
n 

of
 b

io
lo

gi
ca

l q
ua

lit
y

P
yr

op
ho

sp
ha

ta
se

 a
ct

iv
ity

Tr
an

sc
rip

tio
n 

re
gu

la
to

r a
ct

iv
ity

C
el

l m
or

ph
og

en
es

is
R

ep
ro

du
ct

io
n

M
ito

tic
 c

el
l c

yc
le

M
 p

ha
se

tra
ns

cr
ip

tio
n 

fro
m

 R
N

A
 p

ol
ym

er
as

e 
II

re
sp

on
se

 to
 D

N
A

 d
am

ag
e 

st
im

ul
us

D
N

A
 p

ac
ka

gi
ng

R
es

po
ns

e 
to

 c
he

m
ic

al
 s

tim
ul

us
V

es
ic

le
-m

ed
ia

te
d 

tra
ns

po
rt

R
eg

ul
at

io
n 

of
 tr

an
sc

rip
tio

n
Te

lo
m

er
e 

m
ai

nt
en

an
ce

C
el

l d
ev

el
op

m
en

t
C

el
l c

yc
le

 p
ha

se
P

os
t-t

ra
ns

la
tio

na
l p

ro
te

in
 m

od
ifi

ca
tio

n
P

ro
te

in
 b

in
di

ng
C

el
l c

yc
le

R
eg

ul
at

io
n 

of
 m

et
ab

ol
ic

 p
ro

ce
ss

R
es

po
ns

e 
to

 s
tre

ss
Tr

an
sc

rip
tio

n
C

el
lu

la
r l

oc
al

iz
at

io
n

H
yd

ro
la

se
 a

ct
iv

ity
D

N
A

 m
et

ab
ol

ic
 p

ro
ce

ss
R

N
A

 m
et

ab
ol

ic
 p

ro
ce

ss
R

eg
ul

at
io

n 
of

 c
el

lu
la

r p
ro

ce
ss

D
ev

el
op

m
en

ta
l p

ro
ce

ss
R

es
po

ns
e 

to
 s

tim
ul

us
E

st
ab

lis
hm

en
t o

f l
oc

al
iz

at
io

n
B

io
lo

gi
ca

l r
eg

ul
at

io
n

GO annotation

%
 in

 c
om

bi
ne

d 
se

t

G
en

et
ic

 s
et

D
iff

er
en

tia
lly

 e
xp

re
ss

ed

Su
pp

le
m

en
ta

ry
 F

ig
ur

e 
1A

. G
ra

ph
ic

al
 r

ep
re

se
nt

at
io

n 
of

 th
e 

ge
ne

 o
nt

ol
og

y 
(G

O
) 

an
no

ta
tio

ns
 e

nr
ic

he
d 

in
 th

e 
co

m
bi

ne
d 

ge
ne

tic
 h

its
 se

t a
nd

 th
e 

co
m

bi
ne

d 
di

ff
er

en
tia

lly
 e

xp
re

ss
ed

 g
en

e 
se

t b
as

ed
 o

n 
th

e 
pe

rt
ur

ba
tio

ns
 in

 T
ab

le
 1

 fo
r 

w
hi

ch
 

co
m

pl
et

e 
ge

ne
tic

 sc
re

en
s w

er
e 

av
ai

la
bl

e.
  T

he
 a

nn
ot

at
io

ns
 p

re
se

nt
ed

 a
re

 a
ttr

ib
ut

ed
 to

 a
t 

le
as

t 5
%

 o
f t

he
 g

en
es

 in
 th

e 
co

m
bi

ne
d 

da
ta

se
ts

 a
nd

 w
er

e 
al

so
 fo

un
d 

to
 b

e 
en

ric
he

d 
in

 a
t 

le
as

t 2
0%

 o
f t

he
se

 d
at

as
et

s w
he

n 
th

ey
 w

er
e 

an
al

yz
ed

 se
pa

ra
te

ly
. 

Nature Genetics: doi:10.1038/ng.337



Supplementary Figure 1B. Graphical representation of the relation between genetic 
and transcriptional profiling data corresponding to a specific perturbation.    
Genetic and transcriptional data are integrated with interactome data to find interaction 
paths through which a subset of the genetic data may regulate the transcriptional 
response.  The regulation may be direct when the transcription factors regulating the 
response are part of the genetic data, or indirect via intermediate proteins.  The 
ResponseNet algorithm is based on an optimization technique for finding sparse high-
probability paths in the interactome that connect the two types of data.  The result is a 
flow diagram (A).  The directionality of the protein-protein edges in this flow diagram 
does not reflect the order of events but was imposed by the ResponseNet algorithm.  This 
directionality and the auxiliary nodes S and T have no biological meaning and can be 
ignored (B). 
Nodes represent proteins and genes, and edges represent their interactions.  Diamond 
shaped nodes represent genetic data, rectangular nodes represent transcriptional data, and 
circular nodes represent intermediate (hidden) proteins on the paths that link genetic and 
transcriptional data.  
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Supplementary Figure 2. Effect of ubiquitin-related hits on alpha-synuclein 
expression. We performed flow cytometry to analyze if overexpression of ubiquitin-
related hits affected levels of α-syn expressed over a ten hour period using a YFP tagged 

-syn strain. The only large change is due to overexpression of UIP5. When each of the 
strains was examined by microscopy, all showed localization similar to the vector 
control, except for UIP5, which showed a diffuse localization at 6 hours (data not 
shown).  As controls we used a vector strain in which no yeast gene is overexpressed, as 
well as a strain overexpressing the ubiquitin-protein ligase San1 which has no affect on 
α-syn toxicity.   

α
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a

b

Supplementary Figure 3A. Cellular pathways responding to α-syn toxicity predicted 
by ResponseNet.  The fifteen connected components were revealed by ResponseNet 
upon integrating the genetic and transcriptional data of the yeast PD model.  Nodes 
represent proteins and genes, and edges represent their interactions.  Diamond shaped 
nodes represent genetic hits (proteins that modify α-syn toxicity when overexpressed); 
rectangular nodes represent genes that are differentially expressed following α-syn 
expression; and circular nodes represent proteins predicted by ResponseNet that link 
genetic hits and differentially expressed genes.   
Protein nodes are colored based on their GO process annotation according to the 
following scheme: 
• Ubiquitin-related and protein degradation, colored in orange 
• Vesicle trafficking, colored in blue. 
• Cell cycle and meiosis, colored in green. 
• Phosphate metabolism colored in purple. 
• Fatty acid metabolism, colored in pink.  
• Response to oxidative stress, colored in light blue. 
Differentially expressed genes are labeled with a suffix of g+ for up-regulation and g- for 
down-regulation.   
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Supplementary Figure 3B.  Lovastatin inhibits growth of the yeast strain expressing 
several copies of α-syn but has no effect on growth of a related yeast model. Growth 
of a control strain (vector), a strain expressing one copy of α-syn (NoTox), and an 
intermediate toxicity strain (IntTox) expressing several copies of α-syn was measured in 
a galactose containing media with and without 5µM lovastatin.  As an additional control 
we tested the effect of lovastatin on growth of a related yeast model in which fragments 
of the human Huntingtin protein are expressed 1.  Lovastatin had no effect on the growth 
of either the strain expressing a slightly toxic fragment of Huntingtin containing a 25Q 
repeat or the strain expressing a toxic fragment of Huntingtin containing a 72Q repeat.  
Each growth curve reflects average of 3 individual runs marked by bars.   
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1. Duennwald, M.L., Jagadish, S., Muchowski, P.J. & Lindquist, S. Flanking 
sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci U 
S A 103, 11045-50 (2006). 

Supplementary Figure 3C.  Rapamycin inhibits growth of yeast strains expressing 
even 1-copy α-syn but has almost no effect on growth of a related yeast model. 
Growth of a control strain (vector), a strain expressing one copy of α-syn (NoTox), and 
an intermediate toxicity strain (IntTox) expressing several copies of α-syn was measured 
in a galactose containing media with and without 1nM rapamycin.  As an additional 
control we tested the effect of rapamycin on growth of a related yeast model in which 
fragments of the human Huntingtin protein are expressed 1.  Rapamycin had only a slight 
effect on the growth of both the strain expressing a slightly toxic fragment containing a 
25Q repeat, and the strain expressing a toxic fragment containing a 72Q repeat.  Each 
growth curve reflects average of 3 individual runs marked by bars.   
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Supplementary Figure 4.  Cellular response to the DNA damaging agent Methyl 
Methanesulfonate (MMS).  The predicted network connects 91 genetic hits whose 
deletion was found to be toxic in two independent screens 1,2 and nine differentially 
expressed genes defined as "DNA damage signature" genes3. MMS specific protein-DNA 
interactions were included in the input 4.  Due to the size of the input, the output is also 
considerably larger than the other networks we consider.  The flow diagram contains 361 
edges between 258 proteins. The predicted network contains 166 intermediate proteins 
and is highly enriched for response to DNA damage stimulus (p<10-14) and DNA repair 
(p<10-14). The node coloring implies the proteins importance in the response as 
determined by the algorithm, with increasing importance from grey to dark blue. Mec1, 
Rad53, Rfc2, Rfc3, Rfc4 and Rfc5 are essential genes and therefore could not have been 
detected via genetic screening of the deletion library.  
 
 

1 Chang, M., Bellaoui, M., Boone, C. & Brown, G.W. A genome-wide screen for 
methyl methanesulfonate-sensitive mutants reveals genes required for S phase 
progression in the presence of DNA damage. Proc Natl Acad Sci U S A 99, 
16934-9 (2002). 

2 Begley, T.J., Rosenbach, A.S., Ideker, T. & Samson, L.D. Hot spots for 
modulating toxicity identified by genomic phenotyping and localization mapping. 
Mol Cell 16, 117-25 (2004). 

3 Gasch, A.P. et al. Genomic expression responses to DNA-damaging agents and 
the regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell 12, 2987-
3003 (2001). 

4 Workman, C.T. et al. A systems approach to mapping DNA damage response 
pathways. Science 312, 1054-9 (2006). 
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